Demystification of the Geometric Fourier Transforms

被引:0
作者
Bujack, Roxana [1 ]
Scheuermann, Gerik [1 ]
Hitzer, Eckhard [2 ]
机构
[1] Univ Leipzig, Inst Informat, Abt Bild & Signalverarbeitung, Augustupl 10, D-04109 Leipzig, Germany
[2] Int Christian Univ, Dept Mat Sci, Coll Liberal Arts, Tokyo 181, Japan
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
geometric algebra; Clifford algebra; Fourier transform; trigonometric transform; convolution theorem; HYPERCOMPLEX FOURIER; FIELDS;
D O I
10.1063/1.4825543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As it will turn out in this paper, the recent hype about most of the Clifford Fourier transforms is not thoroughly worth the pain. Almost every one that has a real application is separable and these transforms can be decomposed into a sum of real valued transforms with constant multivecor factors. This fact makes their interpretation, their analysis, and their implementation almost trivial.
引用
收藏
页码:525 / 528
页数:4
相关论文
共 21 条
[1]  
[Anonymous], THESIS
[2]   Clifford-Fourier Transform for Color Image Processing [J].
Batard, Thomas ;
Berthier, Michel ;
Saint-Jean, Christophe .
GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, :135-162
[3]  
Batard Thomas, 2013, TRENDS MATH, V27, P177
[4]   The Clifford-Fourier transform [J].
Brackx, F ;
De Schepper, N ;
Sommen, F .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (06) :669-681
[5]   The Cylindrical Fourier Transform [J].
Brackx, Fred ;
De Schepper, Nele ;
Sommen, Frank .
GEOMETRIC ALGEBRA COMPUTING: IN ENGINEERING AND COMPUTER SCIENCE, 2010, :107-119
[6]   The Clifford-Fourier integral kernel in even dimensional Euclidean space [J].
Brackx, Fred ;
De Schepper, Nele ;
Sommen, Frank .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) :718-728
[7]   A General Geometric Fourier Transform Convolution Theorem [J].
Bujack, Roxana ;
Scheuermann, Gerik ;
Hitzer, Eckhard .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (01) :15-38
[8]  
Bujack Roxana, 2013, J MATH IMAGING VIS, P1, DOI DOI 10.1007/S10851-013-0430-Y
[9]  
Bujack Roxana, 2013, TRENDS MATH, V27, P155
[10]  
Bulow T., 1999, Hypercomplex spectral signal representations for the processing and analysis of images