Patlak Image Estimation From Dual Time-Point List-Mode PET Data

被引:52
作者
Zhu, Wentao [1 ]
Li, Quanzheng [2 ]
Bai, Bing [3 ]
Conti, Peter S. [3 ]
Leahy, Richard M. [1 ]
机构
[1] Univ So Calif, Inst Signal & Image Proc, Los Angeles, CA 90089 USA
[2] Massachusetts Gen Hosp, Boston, MA 02114 USA
[3] Univ So Calif, Dept Radiol, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院;
关键词
Dual time-point; dynamic positron emission tomography (PET); lesion detection; Patlak; standardized uptake value (SUV); whole body; POSITRON-EMISSION-TOMOGRAPHY; F-18-FDG PET; FDG PET; RECONSTRUCTION ALGORITHM; PARAMETRIC IMAGES; KINETIC-MODEL; RESOLUTION; HUMANS; TUMOR;
D O I
10.1109/TMI.2014.2298868
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate using dual time-point PET data to perform Patlak modeling. This approach can be used for whole body dynamic PET studies in which we compute voxel-wise estimates of Patlak parameters using two frames of data for each bed position. Our approach directly uses list-mode arrival times for each event to estimate the Patlak parametric image. We use a penalized likelihood method in which the penalty function uses spatially variant weighting to ensure a count independent local impulse response. We evaluate performance of the method in comparison to fractional changes in SUV values (%DSUV) between the two frames using Cramer Rao analysis and Monte Carlo simulation. Receiver operating characteristic (ROC) curves are used to compare performance in differentiating tumors relative to background based on the dynamic data sets. Using area under the ROC curve as a performance metric, we show superior performance of Patlak relative to % DSUV over a range of dynamic data sets and parameters. These results suggest that Patlak analysis may be appropriate for analysis of dual time-point whole body PET data and could lead to superior detection of tumors relative to % DSUV metrics.
引用
收藏
页码:913 / 924
页数:12
相关论文
共 40 条
  • [1] Impact of dual-time-point 18F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules
    Alkhawaldeh, Khaled
    Bural, Gonca
    Kumar, Rakesh
    Alavi, Abass
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2008, 35 (02) : 246 - 252
  • [2] Mean and covariance properties of dynamic PET reconstructions from list-mode data
    Asma, E
    Leahy, RM
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (01) : 42 - 54
  • [3] Asma E., 2003, Nuclear Science Symposium Conference Record, 2003 IEEE, V5, P3092
  • [4] Carson R. E., 2002, POSITRON EMISSION TO, P127
  • [5] A STATISTICAL-MODEL FOR POSITRON EMISSION TOMOGRAPHY - THE EM PARAMETRIC IMAGE-RECONSTRUCTION ALGORITHM - COMMENT
    CARSON, RE
    LANGE, K
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1985, 80 (389) : 20 - 22
  • [6] Dual-time-point 18F-FDG-PET/CT imaging in the assessment of suspected malignancy
    Chan, Wai-Ling
    Ramsay, Stuart C.
    Szeto, Edwin R.
    Freund, Judith
    Pohlen, Judith M.
    Tarlinton, Lisa C.
    Young, Andy
    Hickey, Adam
    Dura, Robert
    [J]. JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2011, 55 (04) : 379 - 390
  • [7] CHOI Y, 1994, J NUCL MED, V35, P818
  • [8] Limitations of dual time point PET in the assessment of lung nodules with low FDG avidity
    Cloran, Francis J.
    Banks, Kevin P.
    Song, Won S.
    Kim, Young
    Bradley, Yong C.
    [J]. LUNG CANCER, 2010, 68 (01) : 66 - 71
  • [9] Dimitrakopoulou-Strauss A, 2004, J NUCL MED, V45, P1480
  • [10] Spatial resolution properties of penalized-likelihood image reconstruction: Space-invariant tomographs
    Fessler, JA
    Rogers, WL
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (09) : 1346 - 1358