A POSTERIORI ERROR ESTIMATION OF hp-dG FINITE ELEMENT METHODS FOR HIGHLY INDEFINITE HELMHOLTZ PROBLEMS

被引:14
作者
Sauter, S. [1 ]
Zech, J. [2 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] ETH, Seminar Appl Math, CH-8092 Zurich, Switzerland
关键词
Helmholtz equation at high wavenumber; hp-finite elements; a posteriori error estimation; discontinuous Galerkin methods; ultra-weak variational formulation; DISCONTINUOUS GALERKIN METHODS; WEAK VARIATIONAL FORMULATION; CONVERGENCE ANALYSIS; WAVE-PROPAGATION; PLANE-WAVES; EQUATION; DISCRETIZATIONS; NUMBER;
D O I
10.1137/140973955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will consider an hp-finite elements discretization of a highly indefinite Helmholtz problem by some dG-formulation which is based on the ultra-weak variational formulation by Cessenat and Depres. We will introduce an a posteriori error estimator and derive reliability and efficiency estimates which are explicit with respect to the wavenumber and the discretization parameters h and p. In contrast to the conventional conforming finite element method for indefinite problems, the dG-formulation is unconditionally stable and the adaptive discretization process may start from a very coarse initial mesh. Numerical experiments will illustrate the efficiency and robustness of the method.
引用
收藏
页码:2414 / 2440
页数:27
相关论文
共 51 条
[1]  
Achenbach J., 2005, WAVE PROPAGATION ELA
[2]  
Ainsworth M., 2000, PUR AP M-WI
[3]  
[Anonymous], 1995, THESIS
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[6]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P3883, DOI 10.1002/(SICI)1097-0207(19971115)40:21<3883::AID-NME231>3.0.CO
[7]  
2-V
[8]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P3443, DOI 10.1002/(SICI)1097-0207(19970930)40:18<3443::AID-NME221>3.0.CO
[9]  
2-1
[10]   QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD [J].
Bonito, Andrea ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :734-771