A MATHEMATICAL MODEL STUDYING MOSQUITO-STAGE TRANSMISSION-BLOCKING VACCINES

被引:4
作者
Zhao, Ruijun [1 ]
Mohammed-Awel, Jemal [2 ]
机构
[1] Minnesota State Univ, Dept Math & Stat, Mankaot, MN 56001 USA
[2] Valdosta State Univ, Dept Math & Comp Sci, Valdosta, GA 31698 USA
基金
美国国家科学基金会;
关键词
Malaria; transition-blocking vaccine; basic reproduction number; stability; backward bifurcation; DRUG-RESISTANT MALARIA; INTERMITTENT PREVENTIVE TREATMENT; INSECTICIDE RESISTANCE; SENSITIVITY-ANALYSIS; SPREAD; DYNAMICS; IMPACT; BIFURCATIONS;
D O I
10.3934/mbe.2014.11.1229
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A compartmental deterministic model is proposed to evaluate the effectiveness of transmission-blocking vaccines of malaria, which targets at the parasite stage in the mosquito. The model is rigorously analyzed and numerical simulations are performed. The results and implications are discussed.
引用
收藏
页码:1229 / 1245
页数:17
相关论文
共 36 条
  • [1] First Results of Phase 3 Trial of RTS,S/AS01 Malaria Vaccine in African Children
    Agnandji, Selidji Todagbe
    Lell, Bertrand
    Soulanoudjingar, Solange Solmeheim
    Fernandes, Jose Francisco
    Abossolo, Beatrice Peggy
    Conzelmann, Cornelia
    Methogo, Barbara Gaelle Nfono Ondo
    Doucka, Yannick
    Flamen, Arnaud
    Mordmueller, Benjamin
    Issifou, Saadou
    Kremsner, Peter Gottfried
    Sacarlal, Jahit
    Aide, Pedro
    Lanaspa, Miguel
    Aponte, John J.
    Nhamuave, Arlindo
    Quelhas, Diana
    Bassat, Quique
    Mandjate, Sofia
    Macete, Eusebio
    Alonso, Pedro
    Abdulla, Salim
    Salim, Nahya
    Juma, Omar
    Shomari, Mwanajaa
    Shubis, Kafuruki
    Machera, Francisca
    Hamad, Ali Said
    Minja, Rose
    Mpina, Maxmillian
    Mtoro, Ali
    Sykes, Alma
    Ahmed, Saumu
    Urassa, Alwisa Martin
    Ali, Ali Mohammed
    Mwangoka, Grace
    Tanner, Marcel
    Tinto, Halidou
    D'Alessandro, Umberto
    Sorgho, Hermann
    Valea, Innocent
    Tahita, Marc Christian
    Kabore, William
    Ouedraogo, Sayouba
    Sandrine, Yara
    Guiguemde, Robert Tinga
    Ouedraogo, Jean Bosco
    Hamel, Mary J.
    Kariuki, Simon
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (20) : 1863 - 1875
  • [2] The impact of bed-net use on malaria prevalence
    Agusto, Folashade B.
    Del Valle, Sara Y.
    Blayneh, Kbenesh W.
    Ngonghala, Calistus N.
    Goncalves, Maria J.
    Li, Nianpeng
    Zhao, Ruijun
    Gong, Hongfei
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2013, 320 : 58 - 65
  • [3] [Anonymous], 1976, STABILITY DYNAMICAL
  • [4] Environmental, pharmacological and genetic influences on the spread of drug-resistant malaria
    Antao, Tiago
    Hastings, Ian M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2011, 278 (1712) : 1705 - 1712
  • [5] MATHEMATICAL-MODELING OF IMMUNITY TO MALARIA
    ARON, JL
    [J]. MATHEMATICAL BIOSCIENCES, 1988, 90 (1-2) : 385 - 396
  • [6] Transmission Intensity and Drug Resistance in Malaria Population Dynamics: Implications for Climate Change
    Artzy-Randrup, Yael
    Alonso, David
    Pascual, Mercedes
    [J]. PLOS ONE, 2010, 5 (10):
  • [7] Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model
    Chitnis, Nakul
    Hyman, James M.
    Cushing, Jim M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) : 1272 - 1296
  • [8] Comparing the Effectiveness of Malaria Vector-Control Interventions Through a Mathematical Model
    Chitnis, Nakul
    Schapira, Allan
    Smith, Thomas
    Steketee, Richard
    [J]. AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2010, 83 (02) : 230 - 240
  • [9] A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria
    Chiyaka, C.
    Tchuenche, J. M.
    Garira, W.
    Dube, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 641 - 662
  • [10] Backwards bifurcations and catastrophe in simple models of fatal diseases
    Dushoff, J
    Huang, WZ
    Castillo-Chavez, C
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (03) : 227 - 248