iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties

被引:32
作者
Chen, Nan [1 ]
Reeja-Jayan, B. [1 ]
Liu, Andong [1 ]
Lau, Jonathan [2 ]
Dunn, Bruce [2 ]
Gleason, Karen K. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
initiated chemical vapor deposition; lithium ion battery; polymer electrolyte; polysilazane; polysiloxane; CHEMICAL-VAPOR-DEPOSITION; CONTACT-ANGLE HYSTERESIS; POLYMER-FILMS; BATTERY ARCHITECTURES; MEMS; HEXAMETHYLCYCLOTRISILOXANE; NANOCOMPOSITES; ELECTRONICS; PLATELETS; ULTRATHIN;
D O I
10.1002/marc.201500649
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li+) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed.
引用
收藏
页码:446 / 452
页数:7
相关论文
共 44 条
[1]  
Ahmed N., 2013, Conf. Pap. Energy, V2013, P4
[2]   Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films [J].
Alf, Mahriah E. ;
Asatekin, Ayse ;
Barr, Miles C. ;
Baxamusa, Salmaan H. ;
Chelawat, Hitesh ;
Ozaydin-Ince, Gozde ;
Petruczok, Christy D. ;
Sreenivasan, Ramaswamy ;
Tenhaeff, Wyatt E. ;
Trujillo, Nathan J. ;
Vaddiraju, Sreeram ;
Xu, Jingjing ;
Gleason, Karen K. .
ADVANCED MATERIALS, 2010, 22 (18) :1993-2027
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Three-dimensional electrodes and battery architectures [J].
Arthur, Timothy S. ;
Bates, Daniel J. ;
Cirigliano, Nicolas ;
Johnson, Derek C. ;
Malati, Peter ;
Mosby, James M. ;
Perre, Emilie ;
Rawls, Matthew T. ;
Prieto, Amy L. ;
Dunn, Bruce .
MRS BULLETIN, 2011, 36 (07) :523-531
[5]   Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane:: A review [J].
Bélanger, MC ;
Marois, Y .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2001, 58 (05) :467-477
[6]   PECVD Synthesis of Polysiloxane-Like Thin Films with Very Low Contact Angle Hysteresis [J].
Borella, Mathias ;
Plissonnier, Marc ;
Belmonte, Thierry .
PLASMA PROCESSES AND POLYMERS, 2007, 4 :S771-S775
[7]   Enthalpies of formation and reaction for primary reactions of methyl- and methylmethoxysilanes from density functional theory [J].
Casserly, TB ;
Gleason, KK .
PLASMA PROCESSES AND POLYMERS, 2005, 2 (09) :669-678
[9]   Nanoscale, conformal polysiloxane thin film electrolytes for three-dimensional battery architectures [J].
Chen, Nan ;
Reeja-Jayan, B. ;
Lau, Jonathan ;
Moni, Priya ;
Liu, Andong ;
Dunn, Bruce ;
Gleason, Karen K. .
MATERIALS HORIZONS, 2015, 2 (03) :309-314
[10]   Low Substrate Temperature Encapsulation for Flexible Electrodes and Organic Photovoltaics [J].
Chen, Nan ;
Kovacik, Peter ;
Howden, Rachel M. ;
Wang, Xiaoxue ;
Lee, Sunghwan ;
Gleason, Karen K. .
ADVANCED ENERGY MATERIALS, 2015, 5 (06)