An algorithm for artificial intelligence-based model adaptation to dynamic data distribution

被引:0
作者
Lee, VCS [1 ]
Sim, ATH [1 ]
机构
[1] Monash Univ, Fac Informat Technol, Sch Business Syst, Clayton, Vic 3800, Australia
来源
INTELLIGENT DAA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS | 2004年 / 3177卷
关键词
fuzzy systems; neural network; chaotic time series;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Changes in data distribution for in-sample training and out-sample validation can be unavoidable due to presence of random dynamic noises created by external uncontrollable environmental factors. To compensate for the variation in data distribution, one approach is to recursively use immediate past prediction error to augment the current data. This paper proposes a simple algorithm that ensures the parameter settings in an ANFIS model are adaptive to its unique data distribution. Such an 'open ended' strategy allows the ANFIS to be more accurate in predicting chaotic time series problems. An application of the proposed a procedure to predict Dow Jones Industrial Average index has yielded better prediction accuracy than using the conventional prediction model.
引用
收藏
页码:232 / 240
页数:9
相关论文
共 50 条
[31]   Assessment of Artificial Intelligence-Based Models and Metaheuristic Algorithms in Modeling Evaporation [J].
Zounemat-Kermani, Mohammad ;
Kisi, Ozgur ;
Piri, Jamshid ;
Mandavi-Meymand, Amin .
JOURNAL OF HYDROLOGIC ENGINEERING, 2019, 24 (10)
[32]   A review of artificial intelligence-based seismic first break picking methods [J].
Yi, Simeng ;
Tang, Donglin ;
Zhao, Yunliang ;
Li, Henghui ;
Ding, Chao .
Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2024, 59 (04) :899-914
[33]   Artificial intelligence-based classification of breast cancer using cellular images [J].
Tripathy, Rajesh Kumar ;
Mahanta, Sailendra ;
Paul, Subhankar .
RSC ADVANCES, 2014, 4 (18) :9349-9355
[34]   Network intrusion detection system: A survey on artificial intelligence-based techniques [J].
Habeeb, Mohammed Sayeeduddin ;
Babu, T. Ranga .
EXPERT SYSTEMS, 2022, 39 (09)
[35]   Artificial intelligence-based techniques for analysis of body cavity fluids: a review [J].
Mir, Aftab Ahmad ;
Sarwar, Abid .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (06) :4019-4061
[36]   Artificial Intelligence-Based Optimization of Reverse Osmosis Systems Operation Performance [J].
Nazif, Sara ;
Mirashrafi, Emad ;
Roghani, Bardia ;
Bidhendi, Gholamreza Nabi .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 2020, 146 (02)
[37]   Artificial intelligence-based nomogram for small-incision lenticule extraction [J].
Park, Seungbin ;
Kim, Hannah ;
Kim, Laehyun ;
Kim, Jin-kuk ;
Lee, In Sik ;
Ryu, Ik Hee ;
Kim, Youngjun .
BIOMEDICAL ENGINEERING ONLINE, 2021, 20 (01)
[38]   Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver [J].
Berbis, M. Alvaro ;
Paulano Godino, Felix ;
Royuela del Val, Javier ;
Alcala Mata, Lidia ;
Luna, Antonio .
WORLD JOURNAL OF GASTROENTEROLOGY, 2023, 29 (09) :1427-1445
[39]   Data driven insights for parabolic trough solar collectors: Artificial intelligence-based energy and exergy performance analysis [J].
Tao, Hai ;
Alawi, Omer A. ;
Homod, Raad Z. ;
Mohammed, Mustafa KA. ;
Goliatt, Leonardo ;
Togun, Hussein ;
Shafik, Shafik S. ;
Heddam, Salim ;
Yaseen, Zaher Mundher .
JOURNAL OF CLEANER PRODUCTION, 2024, 443
[40]   Simulation of an Artificial Intelligence Behavior Analysis Model Based on Neural Network Algorithm [J].
Lin, Shanshan ;
Jia, Fengqi .
2024 INTERNATIONAL CONFERENCE ON POWER, ELECTRICAL ENGINEERING, ELECTRONICS AND CONTROL, PEEEC, 2024, :328-333