Heterochromatin drives compartmentalization of inverted and conventional nuclei

被引:377
作者
Falk, Martin [1 ,2 ]
Feodorova, Yana [3 ,4 ]
Naumova, Natalia [5 ,6 ,7 ]
Imakaev, Maxim [1 ,2 ]
Lajoie, Bryan R. [5 ,6 ,8 ]
Leonhardt, Heinrich [4 ]
Joffe, Boris [4 ]
Dekker, Job [5 ,6 ]
Fudenberg, Geoffrey [1 ,2 ,9 ]
Solovei, Irina [4 ]
Mirny, Leonid A. [1 ,2 ]
机构
[1] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Med Univ Plovdiv, Dept Med Biol, Plovdiv, Bulgaria
[4] Ludwig Maximilians Univ Munchen, Biozentrum, Planegg Martinsried, Germany
[5] Univ Massachusetts, Sch Med, Howard Hughes Med Inst, Worcester, MA 01605 USA
[6] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Program Syst Biol, Worcester, MA USA
[7] Epinomics Inc, Menlo Pk, CA USA
[8] Illumina Inc, San Diego, CA USA
[9] Univ Calif San Francisco, Gladstone Inst Data Sci & Biotechnol, San Francisco, CA 94143 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
LAMIN-B RECEPTOR; CHROMATIN ORGANIZATION; 3-DIMENSIONAL GENOME; PHASE-SEPARATION; ARCHITECTURE; DOMAINS; MODEL; FISH; GENE;
D O I
10.1038/s41586-019-1275-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nucleus of mammalian cells displays a distinct spatial segregation of active euchromatic and inactive heterochromatic regions of the genome(1,2). In conventional nuclei, microscopy shows that euchromatin is localized in the nuclear interior and heterochromatin at the nuclear periphery(1,2). Genome-wide chromosome conformation capture (Hi-C) analyses show this segregation as a plaid pattern of contact enrichment within euchromatin and heterochromatin compartments(3), and depletion between them. Many mechanisms for the formation of compartments have been proposed, such as attraction of heterochromatin to the nuclear lamina(2,4), preferential attraction of similar chromatin to each other(1,4-12), higher levels of chromatin mobility in active chromatin(13-15) and transcription-related clustering of euchromatin(16,17). However, these hypotheses have remained inconclusive, owing to the difficulty of disentangling intra-chromatin and chromatin-lamina interactions in conventional nuclei(18). The marked reorganization of interphase chromosomes in the inverted nuclei of rods in nocturnal mammals(19,20) provides an opportunity to elucidate the mechanisms that underlie spatial compartmentalization. Here we combine Hi-C analysis of inverted rod nuclei with microscopy and polymer simulations. We find that attractions between heterochromatic regions are crucial for establishing both compartmentalization and the concentric shells of pericentromeric heterochromatin, facultative heterochromatin and euchromatin in the inverted nucleus. When interactions between heterochromatin and the lamina are added, the same model recreates the conventional nuclear organization. In addition, our models allow us to rule out mechanisms of compartmentalization that involve strong euchromatin interactions. Together, our experiments and modelling suggest that attractions between heterochromatic regions are essential for the phase separation of the active and inactive genome in inverted and conventional nuclei, whereas interactions of the chromatin with the lamina are necessary to build the conventional architecture from these segregated phases.
引用
收藏
页码:395 / +
页数:20
相关论文
共 54 条
  • [1] Abdennur N., 2019, COOLER SCALABLE STOR, DOI [10.1101/557660v1, DOI 10.1101/557660V1]
  • [2] Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics
    Biggs, Ronald
    Liu, Patrick Z.
    Stephens, Andrew D.
    Marko, John F.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2019, 30 (07) : 820 - 827
  • [3] Organization and function of the 3D genome
    Bonev, Boyan
    Cavalli, Giacomo
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (11) : 661 - 678
  • [4] Choo K.H., 1997, CENTROMERE
  • [5] The lamin B receptor under transcriptional control of C/EBPε is required for morphological but not functional maturation of neutrophils
    Cohen, Tatiana V.
    Klarmann, Kimberly D.
    Sakchaisri, Krisada
    Cooper, Jason P.
    Kuhns, Douglas
    Anver, Miriam
    Johnson, Peter F.
    Williams, Simon C.
    Keller, Jonathan R.
    Stewart, Colin L.
    [J]. HUMAN MOLECULAR GENETICS, 2008, 17 (19) : 2921 - 2933
  • [6] Condensin-driven remodelling of X chromosome topology during dosage compensation
    Crane, Emily
    Bian, Qian
    McCord, Rachel Patton
    Lajoie, Bryan R.
    Wheeler, Bayly S.
    Ralston, Edward J.
    Uzawa, Satoru
    Dekker, Job
    Meyer, Barbara J.
    [J]. NATURE, 2015, 523 (7559) : 240 - U299
  • [7] Cremer M., 2018, METHOD MOL BIOL, V463, P205
  • [8] Transferable model for chromosome architecture
    Di Pierro, Michele
    Zhang, Bin
    Aiden, Erez Lieberman
    Wolynes, Peter G.
    Onuchic, Jose N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (43) : 12168 - 12173
  • [9] Topological domains in mammalian genomes identified by analysis of chromatin interactions
    Dixon, Jesse R.
    Selvaraj, Siddarth
    Yue, Feng
    Kim, Audrey
    Li, Yan
    Shen, Yin
    Hu, Ming
    Liu, Jun S.
    Ren, Bing
    [J]. NATURE, 2012, 485 (7398) : 376 - 380
  • [10] OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
    Eastman, Peter
    Swails, Jason
    Chodera, John D.
    McGibbon, Robert T.
    Zhao, Yutong
    Beauchamp, Kyle A.
    Wang, Lee-Ping
    Simmonett, Andrew C.
    Harrigan, Matthew P.
    Stern, Chaya D.
    Wiewiora, Rafal P.
    Brooks, Bernard R.
    Pande, Vijay S.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)