ULTRA-DISCRETE EQUATIONS AND TROPICAL COUNTERPARTS OF SOME COMPLEX ANALYSIS RESULTS

被引:0
作者
Chen, Min-Feng [1 ,2 ]
Gao, Zong-Sheng [1 ,2 ]
Zhang, Ji-Long [1 ,2 ]
机构
[1] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Tropical Nevanlinna theory; Tropical entire functions; Value distribution; Uniqueness; Ultra-discrete equations; MEROMORPHIC FUNCTIONS; DIFFERENCE-EQUATIONS; NONLINEAR DIFFERENCE; INTEGRABILITY; UNIQUENESS;
D O I
10.2996/kmj/1530496839
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A tropical version of Nevanlinna theory describes value distribution of continuous piecewise linear functions of a real variable. In this paper, we present some results on value distribution theory of tropical difference polynomials and uniqueness theory of tropical entire functions. Application to some ultra-discrete equations is also given.
引用
收藏
页码:264 / 283
页数:20
相关论文
共 16 条
[1]  
Cherry W., 2001, NEVANLINNAS THEORY V
[2]  
Fang ML., 1996, J NANJING U MATH BIQ, V13, P44
[3]   Growth and integrability in discrete systems [J].
Grammaticos, B ;
Tamizhmani, T ;
Ramani, A ;
Tamizhmani, KM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (18) :3811-3821
[4]   Existence of finite-order meromorphic solutions as a detector of integrability in difference equations [J].
Halburd, R. G. ;
Korhonen, R. J. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) :191-203
[5]   Tropical Nevanlinna Theory and Ultradiscrete Equations [J].
Halburd, Rodney G. ;
Southall, Neil J. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (05) :887-911
[6]  
Hayman W. K., 1964, Meromorphic functions
[7]  
Korhonen R., 2015, Tropical Value Distribution Theory and Ultra-discrete Equations
[8]  
Laine I., 1993, Nevanlinna theory and complex differential equations
[9]   TROPICAL VARIANTS OF SOME COMPLEX ANALYSIS RESULTS [J].
Laine, Ilpo ;
Liu, Kai ;
Tohge, Kazuya .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (02) :923-946
[10]   Tropical Nevanlinna theory and second main theorem [J].
Laine, Ilpo ;
Tohge, Kazuya .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 102 :883-922