Chemotherapeutic Drugs Induce ATP Release via Caspase-gated Pannexin-1 Channels and a Caspase/Pannexin-1-independent Mechanism

被引:64
作者
Boyd-Tressler, Andrea [2 ]
Penuela, Silvia [4 ]
Laird, Dale W. [4 ]
Dubyak, George R. [1 ,2 ,3 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Physiol & Biophys, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Sch Med, Case Comprehens Canc Ctr, Cleveland, OH 44106 USA
[4] Univ Western Ontario, Dept Anat & Cell Biol, London, ON N6A SC1, Canada
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
CONSTITUTE SEPARATE PATHWAYS; CALHM1; ION-CHANNEL; MAXI-ANION-CHANNEL; MODULATOR; T-CELL-ACTIVATION; FIND-ME SIGNAL; A(2A) RECEPTORS; A-BETA; APOPTOSIS; AUTOPHAGY;
D O I
10.1074/jbc.M114.590240
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anti-tumor immune responses have been linked to the regulated release of ATP from apoptotic cancer cells to engage P2 purinergic receptor signaling cascades in nearby leukocytes. We used the Jurkat T cell acute lymphocytic leukemia model to characterize the role of pannexin-1 (Panx1) channels in the release of nucleotides during chemotherapeutic drug-induced apoptosis. Diverse pro-apoptotic drugs, including topoisomerase II inhibitors, kinase inhibitors, and proteosome inhibitors, induced functional activation of Panx1 channels via caspase-3-mediated cleavage of the Panx1 autoinhibitory C-terminal domain. The caspase-activated Panx1 channels mediated efflux of ATP, but also ADP and AMP, with the latter two comprising > 90% of the released adenine nucleotide pool as cells transitioned from the early to late stages of apoptosis. Chemotherapeutic drugs also activated an alternative caspase-and Panx1-independent pathway for ATP release from Jurkat cells in the presence of benzyloxycarbonyl-VAD, a pan-caspase inhibitor. Comparison of Panx1 levels indicated much higher expression in leukemic T lymphocytes than in normal, untransformed T lymphoblasts. This suggests that signaling roles for Panx1 may be amplified in leukemic leukocytes. Together, these results identify chemotherapy-activated pannexin-1 channels and ATP release as possible mediators of paracrine interaction between dying tumor cells and the effector leukocytes that mediate immunogenic anti-tumor responses.
引用
收藏
页码:27246 / 27263
页数:18
相关论文
共 86 条
[1]   The role of pannexin1 in the induction and resolution of inflammation [J].
Adamson, Samantha E. ;
Leitinger, Norbert .
FEBS LETTERS, 2014, 588 (08) :1416-1422
[2]   Pannexin1 and Pannexin2 Channels Show Quaternary Similarities to Connexons and Different Oligomerization Numbers from Each Other [J].
Ambrosi, Cinzia ;
Gassmann, Oliver ;
Pranskevich, Jennifer N. ;
Boassa, Daniela ;
Smock, Amy ;
Wang, Junjie ;
Dahl, Gerhard ;
Steinem, Claudia ;
Sosinsky, Gina E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (32) :24420-24431
[3]  
An SZ, 1999, MOL PHARMACOL, V55, P787
[4]   Pannexin1 Drives Multicellular Aggregate Compaction via a Signaling Cascade That Remodels the Actin Cytoskeleton [J].
Bao, Brian A. ;
Lai, Charles P. ;
Naus, Christian C. ;
Morgan, Jeffrey R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (11) :8407-8416
[5]   Pannexin membrane channels are mechanosensitive conduits for ATP [J].
Bao, L ;
Locovei, S ;
Dahl, G .
FEBS LETTERS, 2004, 572 (1-3) :65-68
[6]   The ubiquitin proteasome system - Implications for cell cycle control and the targeted treatment of cancer [J].
Bassermann, Florian ;
Eichner, Ruth ;
Pagano, Michele .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2014, 1843 (01) :150-162
[7]   Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors [J].
Beavis, Paul A. ;
Divisekera, Upulie ;
Paget, Christophe ;
Chow, Melvyn T. ;
John, Liza B. ;
Devaud, Christel ;
Dwyer, Karen ;
Stagg, John ;
Smyth, Mark J. ;
Darcy, Phillip K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (36) :14711-14716
[8]   CD73: a potent suppressor of antitumor immune responses [J].
Beavis, Paul. A. ;
Stagg, John ;
Darcy, Phillip K. ;
Smyth, Mark J. .
TRENDS IN IMMUNOLOGY, 2012, 33 (05) :231-237
[9]   Pannexin1 and Pannexin3 Delivery, Cell Surface Dynamics, and Cytoskeletal Interactions [J].
Bhalla-Gehi, Ruchi ;
Penuela, Silvia ;
Churko, Jared M. ;
Shao, Qing ;
Laird, Dale W. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (12) :9147-9160
[10]   Trafficking dynamics of glycosylated pannexin1 proteins [J].
Boassa, Daniela ;
Qiu, Feng ;
Dahl, Gerhard ;
Sosinsky, Gina .
CELL COMMUNICATION AND ADHESION, 2008, 15 (1-2) :119-132