Parameter optimization for nonlinear grey Bernoulli model on biomass energy consumption prediction

被引:79
作者
Xiao, Qinzi [1 ,2 ]
Shan, Miyuan [1 ]
Gao, Mingyun [1 ,3 ,4 ]
Xiao, Xinping [5 ]
Goh, Mark [3 ,4 ]
机构
[1] Hunan Univ, Sch Business Adm, Changsha 410082, Hunan, Peoples R China
[2] Univ Manitoba, Asper Sch Business, Winnipeg, MB R3T 2N2, Canada
[3] Natl Univ Singapore, NUS Business Sch, Singapore, Singapore
[4] Natl Univ Singapore, Logist Inst Asia Pacif, Singapore, Singapore
[5] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Box-Cox transformation; BC-NGBM(1,1) model; Biomass energy; Quantum adiabatic evolution; NATURAL-GAS CONSUMPTION; FORECASTING-MODEL; QUANTUM GATES; ALGORITHM; SPIN;
D O I
10.1016/j.asoc.2020.106538
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlinear Grey Bernoulli Model (NGBM(1,1)) and its derivative model utilize the specific power exponent function to manifest the nonlinear characteristics of the energy consumption data pattern. Because the modeling constraint conditions and the data processing mechanism are rarely considered in parameter optimization of NGBM(1,1) the aim of this paper is just to establish a novel NGBM(1,1) optimization model with constraints using Box-Cox transformation (BC-NGBM*), in which the constraint conditions of the power index in the power function transformation are discussed according to the principle of difference information and the data processing mechanism. Parameter optimization of BC-NGBM* would be solved collectively using Quantum Adiabatic Evolution (QAE) algorithm. 143 data sets from M4-competition are studied for confirming the effectiveness of BC-NGBM* with QAE algorithm Finally, using data from 2010 to 2018, BC-NGBM* is used to forecast biomass energy consumption in China, the United States, Brazil, and Germany. The proposed model demonstrates high accuracy in all cases and is efficient for short-term biomass energy consumption forecasting. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 47 条
  • [1] Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques
    Altan, Aytac
    Karasu, Seckin
    Bekiros, Stelios
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 126 : 325 - 336
  • [2] Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model
    An, Yan
    Zou, Zhihong
    Zhao, Yanfei
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2015, 29 : 158 - 164
  • [3] Estimating Box-Cox power transformation parameter via goodness-of-fit tests
    Asar, Ozgur
    Ilk, Ozlem
    Dag, Osman
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 91 - 105
  • [4] Digitized adiabatic quantum computing with a superconducting circuit
    Barends, R.
    Shabani, A.
    Lamata, L.
    Kelly, J.
    Mezzacapo, A.
    Heras, U. Las
    Babbush, R.
    Fowler, A. G.
    Campbell, B.
    Chen, Yu
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Lucero, E.
    Megrant, A.
    Mutus, J. Y.
    Neeley, M.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Solano, E.
    Neven, H.
    Martinis, John M.
    [J]. NATURE, 2016, 534 (7606) : 222 - 226
  • [5] Forecasting of foreign exchange rates of Taiwan's major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1)
    Chen, Chun-I
    Chen, Hong Long
    Chen, Shuo-Pei
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (06) : 1194 - 1204
  • [6] Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate
    Chen, Chun-I
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 37 (01) : 278 - 287
  • [7] Forecasting Taiwan's major stock indices by the Nash nonlinear grey Bernoulli model
    Chen, Chun-I
    Hsin, Pei-Han
    Wu, Chin-Shun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) : 7557 - 7562
  • [8] Chen YY, 2017, J GREY SYST-UK, V29, P75
  • [9] Deng J., 2002, BASIS GREY THEORY
  • [10] Extreme learning machine: algorithm, theory and applications
    Ding, Shifei
    Zhao, Han
    Zhang, Yanan
    Xu, Xinzheng
    Nie, Ru
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2015, 44 (01) : 103 - 115