Efficient orbital angular momentum transfer between plasmons and free electrons

被引:43
|
作者
Cai, Wei [1 ,2 ,3 ]
Reinhardt, Ori [4 ,5 ]
Kaminer, Ido [4 ,5 ]
Garcia de Abajo, F. Javier [1 ,6 ]
机构
[1] Barcelona Inst Sci & Technol, Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Nankai Univ, Sch Phys, Minist Educ, Key Lab Weak Light Nonlinear Photon, Tianjin 300457, Peoples R China
[3] Nankai Univ, TEDA Inst Appl Phys, Tianjin 300457, Peoples R China
[4] Technion, Fac Elect Engn, IL-32000 Haifa, Israel
[5] Technion, Inst Solid State, IL-32000 Haifa, Israel
[6] Inst Catalana Recerca & Estudis Avancats, Passeig Lluis Co 23, Barcelona 08010, Spain
基金
中国国家自然科学基金;
关键词
SURFACE-PLASMON; LIGHT; MICROSCOPY; SPECTROSCOPY; GENERATION; DISPERSION; BEAMS;
D O I
10.1103/PhysRevB.98.045424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Free electrons can efficiently absorb or emit plasmons excited in a thin conductor, giving rise to multiple energy peaks in the transmitted electron spectra separated by multiples of the plasmon energy. When the plasmons are chiral, this can also give rise to transfer of orbital angular momentum (OAM). Here, we show that large amounts of OAM can be efficiently transferred between chiral plasmons supported by a thin film and free electrons traversing it. Under realistic conditions, our predictive simulations reveal efficient absorption of a number l >> 1 of chiral plasmons of vorticity m >> 1, resulting in an OAM transfer lmh >> h. Our work supports the use of chiral plasmons sustained by externally illuminated thin films as a way of generating high-vorticity electrons, resulting in a remarkably large fraction of kinetic energy associated with motion along the azimuthal direction, perpendicular to the incident beam.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Fourier relationship between angular position and optical orbital angular momentum
    Yao, Eric
    Franke-Arnold, Sonja
    Courtial, Johannes
    Barnett, Stephen
    Padgett, Miles
    OPTICS EXPRESS, 2006, 14 (20): : 9071 - 9076
  • [12] Polarization radiation of vortex electrons with large orbital angular momentum
    Ivanov, Igor P.
    Karlovets, Dmitry V.
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [13] Deterministic qubit transfer between orbital and spin angular momentum of single photons
    D'Ambrosio, Vincenzo
    Nagali, Eleonora
    Monken, Carlos H.
    Slussarenko, Sergei
    Marrucci, Lorenzo
    Sciarrino, Fabio
    OPTICS LETTERS, 2012, 37 (02) : 172 - 174
  • [14] Convert Acoustic Resonances to Orbital Angular Momentum
    Jiang, Xue
    Li, Yong
    Liang, Bin
    Cheng, Jian-chun
    Zhang, Likun
    PHYSICAL REVIEW LETTERS, 2016, 117 (03)
  • [15] Terabit free-space data transmission employing orbital angular momentum multiplexing
    Wang, Jian
    Yang, Jeng-Yuan
    Fazal, Irfan M.
    Ahmed, Nisar
    Yan, Yan
    Huang, Hao
    Ren, Yongxiong
    Yue, Yang
    Dolinar, Samuel
    Tur, Moshe
    Willner, Alan E.
    NATURE PHOTONICS, 2012, 6 (07) : 488 - 496
  • [16] Discrete emitters as a source of orbital angular momentum
    Liu, R.
    Phillips, D. B.
    Li, F.
    Williams, M. D.
    Andrews, D. L.
    Padgett, M. J.
    JOURNAL OF OPTICS, 2015, 17 (04)
  • [17] Transfer of orbital angular momentum through sub-wavelength waveguides
    Wang, Yanqin
    Ma, Xiaoliang
    Pu, Mingbo
    Li, Xiong
    Huang, Cheng
    Pan, Wenbo
    Zhao, Bo
    Cui, Jianhua
    Luo, Xiangang
    OPTICS EXPRESS, 2015, 23 (03): : 2857 - 2862
  • [18] No general relation between phase vortices and orbital angular momentum
    Berry, M., V
    Liu, Wei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (37)
  • [19] Orbital angular momentum filter of photon based on spin-orbital angular momentum coupling
    Chen, Dong-Xu
    Zhang, Pei
    Liu, Rui-Feng
    Li, Hong-Rong
    Gao, Hong
    Li, Fu-Li
    PHYSICS LETTERS A, 2015, 379 (39) : 2530 - 2534
  • [20] Efficient multiplexing and demultiplexing of orbital angular momentum beams
    Birnbaum, Kevin M.
    Erkmen, Baris I.
    NEXT-GENERATION OPTICAL COMMUNICATION: COMPONENTS, SUB-SYSTEMS, AND SYSTEMS, 2012, 8284