Efficient algorithms for maximum likelihood decoding in the surface code

被引:157
作者
Bravyi, Sergey [1 ]
Suchara, Martin [1 ]
Vargo, Alexander [1 ]
机构
[1] IBM Corp, Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 03期
关键词
DENSITY-MATRIX RENORMALIZATION; STATISTICAL-MECHANICS; QUANTUM CIRCUITS; PRODUCT STATES; THRESHOLD; LATTICE; DIMERS; MEMORY;
D O I
10.1103/PhysRevA.90.032326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time O(n(2)), where n is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time O(n chi(3)), where chi is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension chi to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for chi >= 4.
引用
收藏
页数:15
相关论文
共 37 条
[1]  
[Anonymous], ARXIVQUANTPH0108033
[2]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[3]   Strong Resilience of Topological Codes to Depolarization [J].
Bombin, H. ;
Andrist, Ruben S. ;
Ohzeki, Masayuki ;
Katzgraber, Helmut G. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW X, 2012, 2 (02)
[4]   Topological subsystem codes [J].
Bombin, H. .
PHYSICAL REVIEW A, 2010, 81 (03)
[5]  
Bravyi S, 2005, QUANTUM INF COMPUT, V5, P216
[6]   Simulation of rare events in quantum error correction [J].
Bravyi, Sergey ;
Vargo, Alexander .
PHYSICAL REVIEW A, 2013, 88 (06)
[7]  
Bravyi S, 2009, CONTEMP MATH, V482, P179
[8]  
Cai JY, 2006, LECT NOTES COMPUT SC, V3959, P248
[9]   Implementing a strand of a scalable fault-tolerant quantum computing fabric [J].
Chow, Jerry M. ;
Gambetta, Jay M. ;
Magesan, Easwar ;
Abraham, David W. ;
Cross, Andrew W. ;
Johnson, B. R. ;
Masluk, Nicholas A. ;
Ryan, Colm A. ;
Smolin, John A. ;
Srinivasan, Srikanth J. ;
Steffen, M. .
NATURE COMMUNICATIONS, 2014, 5
[10]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505