Hot Spot Evolution Measured by High-Resolution X-Ray Spectroscopy at the National Ignition Facility

被引:14
|
作者
Gao, Lan [1 ]
Kraus, B. F. [1 ]
Hill, K. W. [1 ]
Schneider, M. B. [2 ]
Christopherson, A. [3 ]
Bachmann, B. [2 ]
Bitter, M. [1 ]
Efthimion, P. [1 ]
Pablant, N. [1 ]
Betti, R. [3 ]
Thomas, C. [3 ]
Thorn, D. [2 ]
MacPhee, A. G. [2 ]
Khan, S. [2 ]
Kauffman, R. [2 ]
Liedahl, D. [2 ]
Chen, H. [2 ]
Bradley, D. [2 ]
Kilkenny, J. [2 ]
Lahmann, B. [4 ]
Stambulchik, E. [5 ]
Maron, Y. [5 ]
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[4] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Weizmann Inst Sci, Fac Phys, IL-7610001 Rehovot, Israel
关键词
INERTIAL CONFINEMENT FUSION; DYNAMICS; PLASMA;
D O I
10.1103/PhysRevLett.128.185002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Evolution of the hot spot plasma conditions was measured using high-resolution x-ray spectroscopy at the National Ignition Facility. The capsules were filled with DD gas with trace levels of Kr and had either a high-density-carbon (HDC) ablator or a tungsten (W)-doped HDC ablator. Time-resolved measurement of the Kr He?? spectra, absolutely calibrated by a simultaneous time-integrated measurement, allows inference of the electron density and temperature through observing Stark broadening and the relative intensities of dielectronic satellites. By matching the calculated hot spot emission using a collisional-radiative code to experimental observations, the hot spot size and areal density are determined. These advanced spectroscopy techniques further reveal the effect of W dopant in the ablator on the hot spot parameters for their improved implosion performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] X-ray area backlighter development at the National Ignition Facility
    Barrios, M. A.
    Regan, S. P.
    Fournier, K. B.
    Epstein, R.
    Smith, R.
    Lazicki, A.
    Rygg, R.
    Fratanduono, D. E.
    Eggert, J.
    Park, H. -S.
    Huntington, C.
    Bradley, D. K.
    Landen, O. L.
    Collins, G. W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [32] Design of the National Ignition Facility static x-ray imager
    Landon, MD
    Koch, JA
    Alvarez, SS
    Bell, PM
    Lee, FD
    Moody, JD
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 698 - 700
  • [33] National Ignition Facility core x-ray streak camera
    Kimbrough, JR
    Bell, PM
    Christianson, GB
    Lee, FD
    Kalantar, DH
    Perry, TS
    Sewall, NR
    Wootton, AJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 748 - 750
  • [34] X-ray diffraction diagnostic design for the National Ignition Facility
    Ahmed, Maryum F.
    House, Allen
    Smith, R. F.
    Ayers, Jay
    Lamb, Zachary S.
    Swift, David W.
    TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION II, 2013, 8850
  • [35] X-ray driven implosions at ignition relevant velocities on the National Ignition Facility
    Meezan, N. B.
    MacKinnon, A. J.
    Hicks, D. G.
    Dewald, E. L.
    Tommasini, R.
    Le Pape, S.
    Doeppner, T.
    Ma, T.
    Farley, D. R.
    Kalantar, D. H.
    Di Nicola, P.
    Callahan, D. A.
    Robey, H. F.
    Thomas, C. A.
    Prisbrey, S. T.
    Jones, O. S.
    Milovich, J. L.
    Clark, D. S.
    Eder, D. C.
    Schneider, M. B.
    Widmann, K.
    Koch, J. A.
    Salmonson, J. D.
    Opachich, Y. P.
    Benedetti, L. R.
    Khan, S. F.
    MacPhee, A. G.
    Glenn, S. M.
    Bradley, D. K.
    Dzenitis, E. G.
    Nathan, B. R.
    Kroll, J. J.
    Hamza, A. V.
    Dixit, S. N.
    Atherton, L. J.
    Landen, O. L.
    Glenzer, S. H.
    Hsing, W. W.
    Suter, L. J.
    Edwards, M. J.
    MacGowan, B. J.
    Moses, E. I.
    Olson, R. E.
    Kline, J. L.
    Kyrala, G. A.
    Moore, A. S.
    Kilkenny, J. D.
    Nikroo, A.
    Moreno, K.
    Hoover, D. E.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [36] The use of perfect crystals in high-resolution X-ray spectroscopy
    Vinogradov, AV
    Feshchenko, RM
    Chernov, VA
    JETP LETTERS, 2003, 78 (10) : 624 - 626
  • [37] A HIGH-RESOLUTION SILICON DRIFT CHAMBER FOR X-RAY SPECTROSCOPY
    GAUTHIER, C
    GOULON, J
    MOGUILINE, E
    ELLEAUME, P
    FEITE, S
    GABURRO, Z
    LONGONI, A
    GATTI, E
    DRESSLER, P
    LAMPERT, MO
    HENCK, R
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 349 (01): : 258 - 262
  • [38] High-resolution x-ray spectroscopy with superconducting tunnel junctions
    Hettl, P
    Angloher, G
    Von Feilitzsch, F
    Höhne, J
    Jochum, J
    Kraus, H
    Mössbauer, RL
    X-RAY SPECTROMETRY, 1999, 28 (05) : 309 - 311
  • [39] High-resolution X-ray fluorescence and excitation spectroscopy of metalloproteins
    Wang, X
    Grush, MM
    Froeschner, AG
    Cramer, SP
    JOURNAL OF SYNCHROTRON RADIATION, 1997, 4 : 236 - 242
  • [40] SEMICONDUCTOR DRIFT DETECTORS FOR HIGH-RESOLUTION X-RAY SPECTROSCOPY
    CASTOLDI, A
    SAMPIETRO, M
    SENSORS AND ACTUATORS A-PHYSICAL, 1992, 31 (1-3) : 245 - 249