Matched Molecular Pair Analysis: Significance and the Impact of Experimental Uncertainty

被引:50
作者
Kramer, Christian [1 ]
Fuchs, Julian E. [1 ]
Whitebread, Steven [2 ]
Gedeck, Peter [3 ]
Liedl, Klaus R. [1 ]
机构
[1] Univ Innsbruck, Dept Theoret Chem, Fac Chem & Pharm, CMBI, A-6020 Innsbruck, Austria
[2] Novartis Inst BioMed Res, Ctr Prote Chem, Cambridge, MA 02139 USA
[3] Novartis Inst Trop Dis, Singapore 138670, Singapore
关键词
HERG POTASSIUM CHANNEL; K+ CHANNEL; MEDICINAL CHEMISTRY; QSAR MODEL; INHIBITION; PREDICTION; BINDING; PHARMACOPHORE; OPTIMIZATION; REPLACEMENTS;
D O I
10.1021/jm500317a
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Matched molecular pair analysis (MMPA) has become a major tool for analyzing large chemistry data sets for promising chemical transformations. However, the dependence of MMPA predictions on data constraints such as the number of pairs involved, experimental uncertainty, source of the experiments, and variability of the true physical effect has not yet been described. In this contribution the statistical basics for judging MMPA are analyzed. We illustrate the connection between overall MMPA statistics and individual pairs with a detailed comparison of average CHEMBL hERG MMPA results versus pairs with extreme transformation effects. Comparing the CHEMBL results to Novartis data, we find that significant transformation effects agree very well if the experimental uncertainty is considered. This indicates that caution must be exercised for predictions from insignificant MMPAs, yet highlights the robustness of statistically validated MMPA and shows that MMPA on public databases can yield results that are very useful for medicinal chemistry.
引用
收藏
页码:3786 / 3802
页数:17
相关论文
共 94 条
[1]  
[Anonymous], 2013, RDKIT CHEMINFORMATIC
[2]   Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers [J].
Aronov, Alex M. .
JOURNAL OF MEDICINAL CHEMISTRY, 2006, 49 (23) :6917-6921
[3]   A model for identifying HERG K+ channel blockers [J].
Aronov, AM ;
Goldman, BB .
BIOORGANIC & MEDICINAL CHEMISTRY, 2004, 12 (09) :2307-2315
[4]   Predictive in silico modeling for hERG channelblockers [J].
Aronov, MM .
DRUG DISCOVERY TODAY, 2005, 10 (02) :149-155
[5]   Optimization of 2-piperidin-4-yl-acetamides as melanin-concentrating hormone receptor 1 (MCH-R1) antagonists: Designing out hERG inhibition [J].
Berglund, Susanne ;
Egner, Bryan J. ;
Graden, Henrik ;
Graden, Joakim ;
Morgan, David G. A. ;
Inghardt, Tord ;
Giordanetto, Fabrizio .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2009, 19 (15) :4268-4273
[6]   Matched molecular pair analysis of activity and properties of glycogen phosphorylase inhibitors [J].
Birch, Alan M. ;
Kenny, Peter W. ;
Simpson, Iain ;
Whittamore, Paul R. O. .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2009, 19 (03) :850-853
[7]  
Brown Nathan., 2012, Bioisosteres in Medicinal Chemistry, VFirst
[8]   Toward a pharmacophore for drugs inducing the long QT syndrome:: Insights from a CoMFA study of HERG K+ channel blockers [J].
Cavalli, A ;
Poluzzi, E ;
De Ponti, F ;
Recanatini, M .
JOURNAL OF MEDICINAL CHEMISTRY, 2002, 45 (18) :3844-3853
[9]   Predictive models for hERG potassium channel blockers [J].
Cianchetta, G ;
Li, Y ;
Kang, JS ;
Rampe, D ;
Fravolini, A ;
Cruciani, G ;
Vaz, RJ .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2005, 15 (15) :3637-3642
[10]   hERG Me Out [J].
Czodrowski, Paul .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (09) :2240-2251