Extraspecial 2-groups and images of braid group representations

被引:68
作者
Franko, Jennifer M. [1 ]
Rowell, Eric C. [1 ]
Wang, Zhenghan [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
braid group; extraspecial; 2-group; arf invariant; Temperley-Lieb algebra;
D O I
10.1142/S0218216506004580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a family of (reducible) representations of the braid groups B(n) corresponding to a specific solution to the Yang-Baxter equation. The images of B(n) under these representations are finite groups, and we identify them precisely as extensions of extra,special 2-groups. The decompositions of the representations into their irreducible constituents are determined, which allows us to relate them to the well-known Jones representations of B(n) factoring over Temperley-Lieb algebras and the corresponding link invariants.
引用
收藏
页码:413 / 427
页数:15
相关论文
共 15 条
[1]  
Birman J. S., 1976, ANN MATH STUD, V82
[2]   Unitary Solutions to the Yang-Baxter Equation in Dimension Four [J].
Dye, H. A. .
QUANTUM INFORMATION PROCESSING, 2003, 2 (1-2) :117-151
[3]  
Freedman MH, 2003, B AM MATH SOC, V40, P31
[4]   The two-eigenvalue problem and density of Jones representation of braid groups [J].
Freedman, MH ;
Larsen, MJ ;
Wang, ZH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) :177-199
[5]  
Fulton W., 1991, REPRESENTATION THEOR, V129
[6]  
GOLDSCHMIDT DM, 1989, GEOMETRIAE DEDICATA, V31, P165
[7]   AUTOMORPHISMS OF EXTRA SPECIAL GROUPS AND NONVANISHING DEGREE 2 COHOMOLOGY [J].
GRIESS, RL .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 48 (02) :403-422
[8]  
HIETARINTA J, 1992, PHYS LETT A, V165, P2452
[9]  
Jones V. F. R., 1986, Geometric Methods in Operator Algebras, V123, P242
[10]   HECKE ALGEBRA REPRESENTATIONS OF BRAID-GROUPS AND LINK POLYNOMIALS [J].
JONES, VFR .
ANNALS OF MATHEMATICS, 1987, 126 (02) :335-388