Biomass derived carbon for energy storage devices

被引:682
作者
Wang, Jie [1 ]
Nie, Ping [1 ]
Ding, Bing
Dong, Shengyang
Hao, Xiaodong
Dou, Hui
Zhang, Xiaogang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Engn, Key Lab Mat & Technol Energy Convers, Nanjing 210016, Peoples R China
关键词
HIGH-RATE CAPABILITY; HIERARCHICAL POROUS CARBON; LITHIUM-SULFUR BATTERIES; BINDER-FREE ELECTRODES; HIGH-SURFACE-AREA; ACTIVATED CARBON; MESOPOROUS CARBON; ANODE MATERIALS; SELF-ACTIVATION; COCONUT-SHELL;
D O I
10.1039/c6ta08742f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical energy storage devices are becoming increasingly more important for reducing fossil fuel energy consumption in transportation and for the widespread deployment of intermittent renewable energy. The applications of different energy storage devices in specific situations are all primarily reliant on the electrode materials, especially carbon materials. Biomass-derived carbon materials are receiving extensive attention as electrode materials for energy storage devices because of their tunable physical/ chemical properties, environmental concern, and economic value. In this review, recent developments in the biomass-derived carbon materials and the properties controlling the mechanism behind their operation are presented and discussed. Moreover, progress on the applications of biomass-derived carbon materials as electrodes for energy storage devices is summarized, including electrochemical capacitors, lithium-sulfur batteries, lithium-ion batteries, and sodium-ion batteries. The effects of the pore structure, surface properties, and graphitic degree on the electrochemical performance are discussed in detail, which will guide further rational design of the biomass-derived carbon materials for energy storage devices.
引用
收藏
页码:2411 / 2428
页数:18
相关论文
共 183 条
  • [1] Biomass energy and the environmental impacts associated with its production and utilization
    Abbasi, Tasneem
    Abbasi, S. A.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03) : 919 - 937
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors
    Balathanigaimani, M. S.
    Shim, Wang-Geun
    Lee, Min-Joo
    Kim, Chan
    Lee, Jae-Wook
    Moon, Hee
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (06) : 868 - 871
  • [4] Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons
    Bazaka, Kateryna
    Jacob, Mohan V.
    Ostrikov, Kostya
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 163 - 214
  • [5] Carbons and Electrolytes for Advanced Supercapacitors
    Beguin, Francois
    Presser, Volker
    Balducci, Andrea
    Frackowiak, Elzbieta
    [J]. ADVANCED MATERIALS, 2014, 26 (14) : 2219 - 2251
  • [6] Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity
    Behabtu, Natnael
    Young, Colin C.
    Tsentalovich, Dmitri E.
    Kleinerman, Olga
    Wang, Xuan
    Ma, Anson W. K.
    Bengio, E. Amram
    ter Waarbeek, Ron F.
    de Jong, Jorrit J.
    Hoogerwerf, Ron E.
    Fairchild, Steven B.
    Ferguson, John B.
    Maruyama, Benji
    Kono, Junichiro
    Talmon, Yeshayahu
    Cohen, Yachin
    Otto, Marcin J.
    Pasquali, Matteo
    [J]. SCIENCE, 2013, 339 (6116) : 182 - 186
  • [7] From dead leaves to high energy density supercapacitors
    Biswal, Mandakini
    Banerjee, Abhik
    Deo, Meenal
    Ogale, Satishchandra
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) : 1249 - 1259
  • [8] New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
    Bommier, Clement
    Surta, Todd Wesley
    Dolgos, Michelle
    Ji, Xiulei
    [J]. NANO LETTERS, 2015, 15 (09) : 5888 - 5892
  • [9] Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors
    Bommier, Clement
    Xu, Rui
    Wang, Wei
    Wang, Xingfeng
    Wen, David
    Lu, Jun
    Ji, Xiulei
    [J]. NANO ENERGY, 2015, 13 : 709 - 717
  • [10] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]