Instrumental variable estimation in ordinal probit models with mismeasured predictors

被引:7
|
作者
Guan, Jing [1 ]
Cheng, Hongjian [1 ]
Bollen, Kenneth A. [2 ,3 ]
Thomas, D. Roland [4 ]
Wang, Liqun [5 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300075, Peoples R China
[2] Univ N Carolina, Dept Psychol & Neurosci, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Sociol, Chapel Hill, NC 27599 USA
[4] Carleton Univ, Sprott Sch Business, Ottawa, ON K1S 5B6, Canada
[5] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2019年 / 47卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Instrumental variable; latent predictors; likelihood method; measurement error; ordinal dependent variable; probit model; GENERALIZED LINEAR-MODELS; REGRESSION; ERRORS; BINARY;
D O I
10.1002/cjs.11517
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Researchers in the medical, health, and social sciences routinely encounter ordinal variables such as self-reports of health or happiness. When modelling ordinal outcome variables, it is common to have covariates, for example, attitudes, family income, retrospective variables, measured with error. As is well known, ignoring even random error in covariates can bias coefficients and hence prejudice the estimates of effects. We propose an instrumental variable approach to the estimation of a probit model with an ordinal response and mismeasured predictor variables. We obtain likelihood-based and method of moments estimators that are consistent and asymptotically normally distributed under general conditions. These estimators are easy to compute, perform well and are robust against the normality assumption for the measurement errors in our simulation studies. The proposed method is applied to both simulated and real data.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 50 条
  • [31] INSTRUMENTAL VARIABLE AND GMM ESTIMATION FOR PANEL DATA WITH MEASUREMENT ERROR
    Xiao, Zhiguo
    Shao, Jun
    Palta, Mari
    STATISTICA SINICA, 2010, 20 (04) : 1725 - 1747
  • [32] Semiparametric Bayes instrumental variable estimation with many weak instruments
    Kato, Ryo
    Hoshino, Takahiro
    STAT, 2021, 10 (01):
  • [33] Instrumental Variable Additive Hazards Models
    Li, Jialiang
    Fine, Jason
    Brookhart, Alan
    BIOMETRICS, 2015, 71 (01) : 122 - 130
  • [34] Instrumental variable estimation of causal odds ratios using structural nested mean models
    Matsouaka, Roland A.
    Tchetgen, Eric J. Tchetgen
    BIOSTATISTICS, 2017, 18 (03) : 465 - 476
  • [35] A Hausman-Taylor instrumental variable approach to the penalized estimation of quantile panel models
    Harding, Matthew
    Lamarche, Carlos
    ECONOMICS LETTERS, 2014, 124 (02) : 176 - 179
  • [36] Estimation in Semi-Varying Coefficient Heteroscedastic Instrumental Variable Models with Missing Responses
    Zhang, Weiwei
    Luo, Jingxuan
    Ma, Shengyun
    MATHEMATICS, 2023, 11 (23)
  • [37] Instrumental Variable Estimation with a Stochastic Monotonicity Assumption
    Small, Dylan S.
    Tan, Zhiqiang
    Ramsahai, Roland R.
    Lorch, Scott A.
    Brookhart, M. Alan
    STATISTICAL SCIENCE, 2017, 32 (04) : 561 - 579
  • [38] Specification testing in nonparametric instrumental variable estimation
    Horowitz, Joel L.
    JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 383 - 396
  • [39] NONPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER MONOTONICITY
    Chetverikov, Denis
    Wilhelm, Daniel
    ECONOMETRICA, 2017, 85 (04) : 1303 - 1320
  • [40] Instrumental variable estimation with heteroskedasticity and many instruments
    Hausman, Jerry A.
    Newey, Whitney K.
    Woutersen, Tiemen
    Chao, John C.
    Swanson, Norman R.
    QUANTITATIVE ECONOMICS, 2012, 3 (02) : 211 - 255