Instrumental variable estimation in ordinal probit models with mismeasured predictors

被引:7
|
作者
Guan, Jing [1 ]
Cheng, Hongjian [1 ]
Bollen, Kenneth A. [2 ,3 ]
Thomas, D. Roland [4 ]
Wang, Liqun [5 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300075, Peoples R China
[2] Univ N Carolina, Dept Psychol & Neurosci, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Sociol, Chapel Hill, NC 27599 USA
[4] Carleton Univ, Sprott Sch Business, Ottawa, ON K1S 5B6, Canada
[5] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2019年 / 47卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Instrumental variable; latent predictors; likelihood method; measurement error; ordinal dependent variable; probit model; GENERALIZED LINEAR-MODELS; REGRESSION; ERRORS; BINARY;
D O I
10.1002/cjs.11517
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Researchers in the medical, health, and social sciences routinely encounter ordinal variables such as self-reports of health or happiness. When modelling ordinal outcome variables, it is common to have covariates, for example, attitudes, family income, retrospective variables, measured with error. As is well known, ignoring even random error in covariates can bias coefficients and hence prejudice the estimates of effects. We propose an instrumental variable approach to the estimation of a probit model with an ordinal response and mismeasured predictor variables. We obtain likelihood-based and method of moments estimators that are consistent and asymptotically normally distributed under general conditions. These estimators are easy to compute, perform well and are robust against the normality assumption for the measurement errors in our simulation studies. The proposed method is applied to both simulated and real data.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 50 条
  • [21] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Yang, Weiming
    Yang, Yiping
    METRIKA, 2020, 83 (01) : 1 - 16
  • [22] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Weiming Yang
    Yiping Yang
    Metrika, 2020, 83 : 1 - 16
  • [23] Hierarchical Bayesian Probit Models for Sub-Areas and Ordinal Data
    Chen, Lu
    Nandram, Balgobin
    STATISTICS AND APPLICATIONS, 2024, 22 (03): : 71 - 94
  • [24] Instrumental variable approach to covariate measurement error in generalized linear models
    Taraneh Abarin
    Liqun Wang
    Annals of the Institute of Statistical Mathematics, 2012, 64 : 475 - 493
  • [25] Double penalized regularization estimation for partially linear instrumental variable models with ultrahigh dimensional instrumental variables
    Zhao, Peixin
    Wang, Junqi
    Tang, Xinrong
    Yang, Weiming
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4636 - 4653
  • [26] Censored quantile instrumental-variable estimation with Stata
    Chernozhukov, Victor
    Fernandez-Val, Ivan
    Han, Sukjin
    Kowalski, Amanda
    STATA JOURNAL, 2019, 19 (04) : 768 - 781
  • [27] Estimation of nonlinear models with mismeasured regressors using marginal information
    Hu, Yingyao
    Ridder, Geert
    JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (03) : 347 - 385
  • [28] DOSE AS INSTRUMENTAL VARIABLE IN EXPOSURE-SAFETY ANALYSIS USING COUNT MODELS
    Wang, Jixian
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2012, 22 (03) : 565 - 581
  • [29] Amultiple imputationmethod for incomplete correlated ordinal data using multivariate probit models
    Zhang, Xiao
    Li, Quanlin
    Cropsey, Karen
    Yang, Xiaowei
    Zhang, Kui
    Belin, Thomas
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2360 - 2375
  • [30] Nonparametric instrumental-variable estimation
    Chetverikov, Denis
    Kim, Dongwoo
    Wilhelm, Daniel
    STATA JOURNAL, 2018, 18 (04) : 937 - 950