Instrumental variable estimation in ordinal probit models with mismeasured predictors

被引:7
|
作者
Guan, Jing [1 ]
Cheng, Hongjian [1 ]
Bollen, Kenneth A. [2 ,3 ]
Thomas, D. Roland [4 ]
Wang, Liqun [5 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300075, Peoples R China
[2] Univ N Carolina, Dept Psychol & Neurosci, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Sociol, Chapel Hill, NC 27599 USA
[4] Carleton Univ, Sprott Sch Business, Ottawa, ON K1S 5B6, Canada
[5] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2019年 / 47卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Instrumental variable; latent predictors; likelihood method; measurement error; ordinal dependent variable; probit model; GENERALIZED LINEAR-MODELS; REGRESSION; ERRORS; BINARY;
D O I
10.1002/cjs.11517
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Researchers in the medical, health, and social sciences routinely encounter ordinal variables such as self-reports of health or happiness. When modelling ordinal outcome variables, it is common to have covariates, for example, attitudes, family income, retrospective variables, measured with error. As is well known, ignoring even random error in covariates can bias coefficients and hence prejudice the estimates of effects. We propose an instrumental variable approach to the estimation of a probit model with an ordinal response and mismeasured predictor variables. We obtain likelihood-based and method of moments estimators that are consistent and asymptotically normally distributed under general conditions. These estimators are easy to compute, perform well and are robust against the normality assumption for the measurement errors in our simulation studies. The proposed method is applied to both simulated and real data.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 50 条
  • [1] Instrumental variable estimation in a probit measurement error model
    Buzas, JS
    Stefanski, LA
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 55 (01) : 47 - 62
  • [2] Parameter estimation approaches to tackling measurement error and multicollinearity in ordinal probit models
    Guan, Jing
    Zhao, Yunfeng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (16) : 3835 - 3859
  • [3] INSTRUMENTAL VARIABLE ESTIMATION IN BINARY REGRESSION MEASUREMENT ERROR MODELS
    STEFANSKI, LA
    BUZAS, JS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) : 541 - 550
  • [4] Bayesian instrumental variable estimation in linear measurement error models
    Wang, Qi
    Wang, Lichun
    Wang, Liqun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 500 - 531
  • [5] Instrumental variable estimation in functional linear models
    Florens, Jean-Pierre
    Van Bellegem, Sebastien
    JOURNAL OF ECONOMETRICS, 2015, 186 (02) : 465 - 476
  • [6] Bias-corrected instrumental variable estimation for spatial autoregressive models with measurement errors
    Luo, Guowang
    Wu, Mixia
    SPATIAL STATISTICS, 2025, 65
  • [7] Instrumental variable estimation for functional concurrent regression models
    Petrovich, Justin
    Taoufik, Bahaeddine
    Davis, Zachary George
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (08) : 1570 - 1589
  • [8] Instrumental variable approach to covariate measurement error in generalized linear models
    Abarin, Taraneh
    Wang, Liqun
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2012, 64 (03) : 475 - 493
  • [9] Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
    Xue, Lin
    Wang, Liqun
    ECONOMETRICS, 2024, 12 (03)
  • [10] Instrumental variable estimation for compositional treatments
    Ailer, Elisabeth
    Mueller, Christian L.
    Kilbertus, Niki
    SCIENTIFIC REPORTS, 2025, 15 (01):