Magnetic Quench Antenna for MQXF Quadrupoles

被引:10
作者
Marchevsky, Maxim [1 ]
Sabbi, GianLuca [1 ]
Prestemon, Soren [1 ]
Strauss, Thomas [2 ]
Stoynev, Stoyan [2 ]
Chlachidze, Guram [2 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
关键词
Accelerator magnets; quench; magnetic analysis; magnetic sensors; CURRENT REDISTRIBUTION; LOCALIZATION; PROPAGATION;
D O I
10.1109/TASC.2016.2642983
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs of flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
[Anonymous], IEEE T APPL SUPERCON
[2]  
[Anonymous], 2015, IEEE T APPL SUPERCON
[3]  
Apollinari G, 2015, CERN-2015-005
[4]   Current redistribution between strands and quench process in a superconducting cable [J].
Buznikov, NA ;
Pukhov, AA ;
Rakhmanov, AL ;
Vysotsky, VS .
CRYOGENICS, 1996, 36 (04) :275-281
[5]   Improved quench localization and quench propagation velocity measurements in the LHC superconducting dipole magnets [J].
Calvi, M ;
Floch, E ;
Kouzue, S ;
Siemko, A .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :1209-1212
[6]   Magnet Design of the 150 mm Aperture Low-β Quadrupoles for the High Luminosity LHC [J].
Ferracin, P. ;
Ambrosio, G. ;
Anerella, M. ;
Borgnolutti, F. ;
Bossert, R. ;
Cheng, D. ;
Dietderich, D. R. ;
Felice, H. ;
Ghosh, A. ;
Godeke, A. ;
Bermudez, S. Izquierdo ;
Fessia, P. ;
Krave, S. ;
Juchno, M. ;
Perez, J. C. ;
Oberli, L. ;
Sabbi, G. ;
Todesco, E. ;
Yu, M. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (03)
[7]   Quench localization and current redistribution after quench in superconducting dipole magnets wound with Rutherford-type cables [J].
Jongeleen, S ;
Leroy, D ;
Siemko, A ;
Wolf, R .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) :179-182
[8]   QUENCH OBSERVATION IN LHC SUPERCONDUCTING ONE METER LONG DIPOLE MODELS BY FIELD PERTURBATION MEASUREMENTS [J].
Leroy, D. ;
Krzywinski, J. ;
Remondino, V. ;
Walckiers, L. ;
Wolf, R. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1993, 3 (01) :781-784
[9]   Magnetic Detection of Quenches in High-Field Accelerator Magnets [J].
Marchevsky, M. ;
DiMarco, J. ;
Felice, H. ;
Hafalia, A. R. ;
Joseph, J. ;
Lizarazo, J. ;
Wang, X. ;
Sabbi, G. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
[10]   Quench observation using quench antennas on RHIC IR quadrupole magnets [J].
Ogitsu, T ;
Terashima, A ;
Tsuchiya, K ;
Ganetis, G ;
Muratore, J ;
Wanderer, P .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (04) :3098-3101