Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures

被引:42
|
作者
Shaikh, F. U. A. [1 ]
Taweel, M. [1 ]
机构
[1] Curtin Univ, Dept Civil Engn, Perth, WA 6845, Australia
关键词
concrete; fibres; elevated temperatures; fire; compressive strength; failure behaviour; MECHANICAL-PROPERTIES;
D O I
10.12989/acc.2015.3.4.283
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents the effects of elevated temperatures of 400 degrees C and 800 degrees C on the residual compressive strength and failure behaviour of fibre reinforced concretes and comparison is made with that of unreinforced control concrete. Two types of short fibres are used in this study e.g., steel and basalt fibres. The results show that the residual compressive strength capacity of steel fibre reinforced concrete is higher than unreinforced concrete at both elevated temperatures. The basalt fibre reinforced concrete, on the other hand, showed lower strength retention capacity than the control unreinforced concrete. However, the use of hybrid steel-basalt fibre reinforcement recovered the deficiency of basalt fibre reinforced concrete, but still slightly lower than the control and steel fibres reinforced concretes. The use of fibres reduces the spalling and explosive failure of steel, basalt and hybrid steel-basalt fibres reinforced concretes oppose to spalling in deeper regions of ordinary control concrete after exposure to above elevated temperatures. Microscopic observation of steel and basalt fibres surfaces after exposure to above elevated temperatures shows peeling of thin layer from steel surface at 800 degrees C, whereas in the case of basalt fibre formation of Plagioclase mineral crystals on the surface are observed at elevated temperatures.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 50 条
  • [21] The Compressive Strength of Ultra-high Performance Concrete at Elevated Temperatures
    MacDougall, Branna
    Hajiloo, Hamzeh
    Sarhat, Salah
    Kabanda, John
    Green, Mark
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 3, CSCE 2022, 2024, 359 : 895 - 906
  • [22] Effect of microsilica addition on compressive strength of rubberized concrete at elevated temperatures
    Al-Mutairi, Nayef
    Al-Rukaibi, Fahad
    Bufarsan, Ahmed
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2010, 12 (01) : 41 - 49
  • [23] Compressive strength prediction models for concrete containing nano materials and exposed to elevated temperatures
    Dahish, Hany A.
    Almutairi, Ahmed D.
    RESULTS IN ENGINEERING, 2025, 25
  • [24] Experimental and Data-Driven analysis on compressive strength of steel fibre reinforced high strength concrete and mortar at elevated temperature
    Li, Shan
    Liew, J. Y. Richard
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 341
  • [25] The Compressive Strength of Ultra-high Performance Concrete at Elevated Temperatures
    MacDougall, Branna
    Hajiloo, Hamzeh
    Sarhat, Salah
    Kabanda, John
    Green, Mark
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 4, CSCE 2022, 2024, 367 : 895 - 906
  • [26] A convolution-based deep learning approach for estimating compressive strength of fiber reinforced concrete at elevated temperatures
    Chen, Huaguo
    Yang, Jianjun
    Chen, Xinhong
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 313
  • [27] Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures
    Al-Attar, Alyaa A.
    Abdulrahman, Mazin B.
    Hamada, Hussein M.
    Tayeh, Bassam A.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (02): : 1966 - 1977
  • [28] Fracture behaviour of steel fibre reinforced recycled aggregate concrete after exposure to elevated temperatures
    Chen, G. M.
    Yang, H.
    Lin, Cj.
    Chen, J. F.
    He, Y. H.
    Zhang, H. Z.
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 128 : 272 - 286
  • [29] Behaviour of Steel Fibre Reinforced Geopolymer Concrete Deep Beams Under the Effect of Elevated Temperatures
    Albidah, Abdulrahman S.
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING AND ARCHITECTURE, VOL 1, ICCEA 2023, 2024, 530 : 322 - 332
  • [30] Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures
    Bangi, Mugume Rodgers
    Horiguchi, Takashi
    CEMENT AND CONCRETE RESEARCH, 2011, 41 (11) : 1150 - 1156