Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity

被引:17
作者
Ebmeyer, Carsten [1 ]
机构
[1] Univ Bonn, Math Seminar, D-53115 Bonn, Germany
关键词
non-Newtonian fluid flow; shear thinning fluid; power-law fluid; no-stick condition; p-Laplacian; difference quotient;
D O I
10.1002/mma.748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The system -divS(D(u)) + (u-del)u+del pi=f, div u=0 is considered on a bounded three-dimensional domain under no-stick boundary value conditions, where S has p-structure for some p < 2 and D(u) is the symmetrized gradient of u. Various regularity results for the velocity u and the pressure pi in fractional order Sobolev and Nikolskii spaces are obtained. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:1687 / 1707
页数:21
相关论文
共 21 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Steady flow of fluids with smear-dependent viscosity under mixed boundary value conditions in polyhedral domains [J].
Ebmeyer, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (05) :629-650
[3]  
Ebmeyer C, 2005, Z ANAL ANWEND, V24, P353
[4]  
Ebmeyer C, 1999, Z ANAL ANWEND, V18, P539
[5]   Mixed boundary value problems for nonlinear elliptic equations in multidimensional non-smooth domains [J].
Ebmeyer, C ;
Frehse, J .
MATHEMATISCHE NACHRICHTEN, 1999, 203 :47-74
[6]  
Ebmeyer C, 2002, MATH NACHR, V236, P91, DOI 10.1002/1522-2616(200203)236:1<91::AID-MANA91>3.3.CO
[7]  
2-T
[8]   Steady Navier-Stokes equations with mixed boundary value conditions in three-dimensional Lipschitzian domains [J].
Ebmeyer, C ;
Frehse, J .
MATHEMATISCHE ANNALEN, 2001, 319 (02) :349-381
[9]  
Ebmeyer C., 2001, ADV DIFFERENTIAL EQU, V6, P873
[10]   An existence result for fluids with shear dependent viscosity - Steady flows [J].
Frehse, J ;
Malek, J ;
Steinhauer, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) :3041-3049