A role for vector control in dengue vaccine programs

被引:14
作者
Christofferson, Rebecca C. [1 ]
Mores, Christopher N. [1 ,2 ]
机构
[1] Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Expt Infect Dis Res, Baton Rouge, LA 70803 USA
基金
美国国家卫生研究院;
关键词
Dengue; Aedes aegypti; Vaccine; Vector control; Arbovirus; Transmission; Models; AEDES-ALBOPICTUS; PUBLIC-HEALTH; YELLOW-FEVER; TRANSMISSION; DISEASE; INSECTICIDE; STRATEGIES; AEGYPTI; MALARIA; MODELS;
D O I
10.1016/j.vaccine.2015.09.114
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Development and deployment of a successful dengue virus (DENV) vaccine has confounded research and pharmaceutical entities owing to the complex nature of DENV immunity and concerns over exacerbating the risk of DENV hemorrhagic fever (DHF) as a consequence of vaccination. Thus, consensus is growing that a combination of mitigation strategies will be needed for DENV to be successfully controlled, likely involving some form of vector control to enhance a vaccine program. We present here a deterministic compartmental model to illustrate that vector control may enhance vaccination campaigns with imperfect coverage and efficacy. Though we recognize the costs and challenges associated with continuous control programs, simultaneous application of vector control methods coincident with vaccine roll out can have a positive effect by further reducing the number of human cases. The success of such an integrative strategy is predicated on closing gaps in our understanding of the DENV transmission cycle in hyperedemic locations. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7069 / 7074
页数:6
相关论文
共 30 条
[1]  
Achee NL, 2015, PLOS NEGLECT TROP D, V9
[2]   Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya [J].
Atieli, Harrysone E. ;
Zhou, Guofa ;
Afrane, Yaw ;
Lee, Ming-Chieh ;
Mwanzo, Isaac ;
Githeko, Andrew K. ;
Yan, Guiyun .
PARASITES & VECTORS, 2011, 4
[3]   Yellow fever: A disease that has yet to be conquered [J].
Barrett, Alan D. T. ;
Higgs, Stephen .
ANNUAL REVIEW OF ENTOMOLOGY, 2007, 52 :209-229
[4]   Vaccinations in disease models with antibody-dependent enhancement [J].
Billings, Lora ;
Fiorillo, Amy ;
Schwartz, Ira B. .
MATHEMATICAL BIOSCIENCES, 2008, 211 (02) :265-281
[5]   Spatial and Temporal Heterogeneities of Aedes albopictus Density in La Reunion Island: Rise and Weakness of Entomological Indices [J].
Boyer, Sebastien ;
Foray, Coralie ;
Dehecq, Jean-Sebastien .
PLOS ONE, 2014, 9 (03)
[6]   Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes [J].
Carvalho, Danilo O. ;
McKemey, Andrew R. ;
Garziera, Luiza ;
Lacroix, Renaud ;
Donnelly, Christl A. ;
Alphey, Luke ;
Malavasi, Aldo ;
Capurro, Margareth L. .
PLOS NEGLECTED TROPICAL DISEASES, 2015, 9 (07)
[7]   A Reevaluation of the Role of Aedes albopictus in Dengue Transmission [J].
Christofferson, Rebecca C. .
JOURNAL OF INFECTIOUS DISEASES, 2015, 212 (08) :1177-1179
[8]   Characterizing the likelihood of dengue emergence and detection in naive populations [J].
Christofferson, Rebecca C. ;
Mores, Christopher N. ;
Wearing, Helen J. .
PARASITES & VECTORS, 2014, 7
[9]   Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review [J].
Esu, Ekpereonne ;
Lenhart, Audrey ;
Smith, Lucy ;
Horstick, Olaf .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2010, 15 (05) :619-631
[10]   Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease [J].
Hadinegoro, S. R. ;
Arredondo-Garcia, J. L. ;
Capeding, M. R. ;
Deseda, C. ;
Chotpitayasunondh, T. ;
Dietze, R. ;
Ismail, H. I. Hj Muhammad ;
Reynales, H. ;
Limkittikul, K. ;
Rivera-Medina, D. M. ;
Tran, H. N. ;
Bouckenooghe, A. ;
Chansinghakul, D. ;
Cortes, M. ;
Fanouillere, K. ;
Forrat, R. ;
Frago, C. ;
Gailhardou, S. ;
Jackson, N. ;
Noriega, F. ;
Plennevaux, E. ;
Wartel, T. A. ;
Zambrano, B. ;
Saville, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (13) :1195-1206