Study of Resting-State Functional Connectivity Networks Using EEG Electrodes Position As Seed

被引:68
|
作者
Rojas, Gonzalo M. [1 ,2 ,3 ,4 ]
Alvarez, Carolina [4 ,5 ]
Montoya, Carlos E. [2 ]
de la Iglesia-Vaya, Maria [6 ,7 ,8 ]
Cisternas, Jaime E. [9 ]
Galvez, Marcelo [2 ,3 ,4 ]
机构
[1] Clin las Condes, Dept Radiol, Lab Adv Med Image Proc, Santiago, Chile
[2] Clin las Condes, Med Biomodeling Lab, Dept Radiol, Santiago, Chile
[3] Clin las Condes, Dept Radiol, Santiago, Chile
[4] Clin las Condes, Adv Epilepsy Ctr, Santiago, Chile
[5] Clin las Condes, Dept Paediat Neurol, Santiago, Chile
[6] Joint Unit FISABIO & Prince Felipe Res Ctr CIPF, Valencia, Spain
[7] Ctr Invest Biomed Red Salud Mental CIBERSAM G23, Madrid, Spain
[8] Hosp Sagunto, Valencia, Spain
[9] Univ Los Andes, Sch Engn & Appl Sci, Santiago, Chile
关键词
functional connectivity; EEG; rs-fMRI; EEG-fMRI; 10-10 EEG system; 10-20 EEG system; COMBINING EEG; FMRI; VISUALIZATION; OPTIMIZATION; REGISTRATION; ARCHITECTURE; SOFTWARE; EPILEPSY; SYSTEM; CORTEX;
D O I
10.3389/fnins.2018.00235
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Electroencephalography (EEG) is the standard diagnosis method for a wide variety of diseases such as epilepsy, sleep disorders, encephalopathies, and coma, among others. Resting-state functional magnetic resonance (rs-fMRI) is currently a technique used in research in both healthy individuals as well as patients. EEG and fMRI are procedures used to obtain direct and indirect measurements of brain neural activity: EEG measures the electrical activity of the brain using electrodes placed on the scalp, and fMRI detects the changes in blood oxygenation that occur in response to neural activity. EEG has a high temporal resolution and low spatial resolution, while fMRI has high spatial resolution and low temporal resolution. Thus, the combination of EEG with rs-fMRI using different methods could be very useful for research and clinical applications. In this article, we describe and show the results of a new methodology for processing rs-fMRI using seeds positioned according to the 10-10 EEG standard. We analyze the functional connectivity and adjacency matrices obtained using 65 seeds based on 10-10 EEG scheme and 21 seeds based on 10-20 EEG. Connectivity networks are created using each 10-20 EEG seeds and are analyzed by comparisons to the seven networks that have been found in recent studies. The proposed method captures high correlation between contralateral seeds, ipsilateral and contralateral occipital seeds, and some in the frontal lobe.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Functional connectivity in burnout syndrome: a resting-state EEG study
    Afek, Natalia
    Harmatiuk, Dmytro
    Gawlowska, Magda
    Ferreira, Joao Miguel Alves
    Golonka, Krystyna
    Tukaiev, Sergii
    Popov, Anton
    Marek, Tadeusz
    FRONTIERS IN HUMAN NEUROSCIENCE, 2025, 19
  • [2] Altered functional connectivity in common resting-state networks in patients with major depressive disorder: A resting-state functional connectivity study
    Krug, S.
    Mueller, T.
    Kayali, Oe
    Leichter, E.
    Peschel, S. K., V
    Jahn, N.
    Winter, L.
    Krueger, T. H. C.
    Kahl, K. G.
    Sinke, C.
    Heitland, I
    JOURNAL OF PSYCHIATRIC RESEARCH, 2022, 155 : 33 - 41
  • [3] Assessing Brain Networks by Resting-State Dynamic Functional Connectivity: An fNIRS-EEG Study
    Zhang, Yujin
    Zhu, Chaozhe
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [4] Prediction of Cognitive Task Activations via Resting-State Functional Connectivity Networks: An EEG Study
    Wang, Luyao
    Zhang, Jian
    Liu, Tiantian
    Chen, Duanduan
    Yang, Dikun
    Go, Ritsu
    Wu, Jinglong
    Yan, Tianyi
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (01) : 181 - 188
  • [5] Comparison of functional connectivity metrics using an unsupervised approach: a source resting-state EEG study
    Fraschini, Matteo
    Lai, Margherita
    Didaci, Luca
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2018, 17 (04) : 393 - 396
  • [6] Resting-state EEG functional connectivity in Parkinson's disease
    Shoorangiz, R.
    Peterson, E.
    Jones, R.
    Livingston, L.
    Kirk, I.
    Tippett, L.
    Livingstone, M.
    Anderson, T.
    Dalrymple-Alford, J.
    MOVEMENT DISORDERS, 2019, 34
  • [7] A longitudinal model for functional connectivity networks using resting-state fMRI
    Hart, Brian
    Cribben, Ivor
    Fiecas, Mark
    NEUROIMAGE, 2018, 178 : 687 - 701
  • [8] Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study
    Adianes Herrera-Díaz
    Raúl Mendoza-Quiñones
    Lester Melie-Garcia
    Eduardo Martínez-Montes
    Gretel Sanabria-Diaz
    Yuniel Romero-Quintana
    Iraklys Salazar-Guerra
    Mario Carballoso-Acosta
    Antonio Caballero-Moreno
    Brain Topography, 2016, 29 : 368 - 381
  • [9] A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity
    Yang, Xin
    Zhang, Ning
    Schrader, Paul
    MACHINE LEARNING WITH APPLICATIONS, 2022, 8
  • [10] Functional Connectivity and Quantitative EEG in Women with Alcohol Use Disorders: A Resting-State Study
    Herrera-Diaz, Adianes
    Mendoza-Quinones, Raul
    Melie-Garcia, Lester
    Martinez-Montes, Eduardo
    Sanabria-Diaz, Gretel
    Romero-Quintana, Yuniel
    Salazar-Guerra, Iraklys
    Carballoso-Acosta, Mario
    Caballero-Moreno, Antonio
    BRAIN TOPOGRAPHY, 2016, 29 (03) : 368 - 381