Monotonicity and symmetry of singular solutions to quasilinear problems

被引:13
作者
Esposito, Francesco [1 ,2 ]
Montoro, Luigi [1 ]
Sciunzi, Berardino [1 ]
机构
[1] UNICAL, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
[2] Univ Picardie Jules Verne, LAMFA, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 126卷
关键词
Quasilinear elliptic equations; Singular solutions; Qualitative properties; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; REGULARITY; THEOREMS; MAXIMUM;
D O I
10.1016/j.matpur.2018.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider singular solutions to quasilinear elliptic equations under zero Dirichlet boundary condition. Under suitable assumptions on the nonlinearity we deduce symmetry and monotonicity properties of positive solutions via an improved moving plane procedure. (C) 2018 Published by Elsevier Masson SAS.
引用
收藏
页码:214 / 231
页数:18
相关论文
共 50 条
[31]   Radial symmetry for a quasilinear elliptic equation with a critical Sobolev growth and Hardy potential [J].
Oliva, Francescantonio ;
Sciunzi, Berardino ;
Vaira, Giusi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 140 :89-109
[32]   Symmetry and monotonicity property of a solution of (p, q) Laplacian equation with singular terms [J].
Jana, Ritabrata .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (3-4) :483-502
[33]   Nonexistence of solutions for singular quasilinear differential inequalities with a gradient nonlinearity [J].
Li, Xiaohong ;
Li, Fengquan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2812-2822
[34]   Singular solutions for coercive quasilinear elliptic inequalities with nonlocal terms [J].
Filippucci, Roberta ;
Ghergu, Marius .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
[35]   Sign-changing and symmetry-breaking solutions to singular problems [J].
Szulkin, Andrzej ;
Waliullah, Shoyeb .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (11) :1191-1208
[36]   Monotonicity and Symmetry of Solutions to Fractional Laplacian in Strips [J].
Sun, Tao ;
Su, Hua .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[37]   Weak solutions for singular quasilinear elliptic systems [J].
Singh, Gurpreet .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (10) :1389-1408
[38]   THREE SOLUTIONS FOR A SINGULAR QUASILINEAR ELLIPTIC PROBLEM [J].
Faraci, Francesca ;
Smyrlis, George .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) :179-196
[39]   Multiple Solutions for a Singular Quasilinear Elliptic System [J].
Chen, Lin ;
Chen, Caisheng ;
Xiu, Zonghu .
SCIENTIFIC WORLD JOURNAL, 2013,
[40]   Existence of multiple solutions for a singular and quasilinear equation [J].
Saoudi, K. ;
Kratou, M. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (07) :893-925