Laser-pulse and electron-bunch plasma wakefield accelerator

被引:3
作者
Wang, Tianhong [1 ]
Khudik, Vladimir [1 ,2 ,3 ]
Shvets, Gennady [1 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14850 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
来源
PHYSICAL REVIEW ACCELERATORS AND BEAMS | 2020年 / 23卷 / 11期
关键词
INTENSE;
D O I
10.1103/PhysRevAccelBeams.23.111304
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Propagation distances of intense laser pulses and high-charge electron beams through the plasma are, respectively, limited by diffraction and self-deceleration. This imposes severe constraints on the performance of the two major advanced accelerator concepts: laser and plasma wakefield accelerators. Using numerical simulations, we demonstrate that when the two beams copropagate in the plasma, they can interact synergistically and extend each other's travel distances. The key interactions responsible for the synergy are found to be laser channeling by the electron bunch, and direct laser acceleration of the bunch electrons by the laser pulse. Remarkably, the amount of energy transferred from the laser pulse to the plasma can be increased by several times by the guiding electron bunch despite its small energy content. Implications of such synergistic interactions for the high-gradient acceleration of externally injected witness charges are discussed, and a new concept of a laser-pulse and electron-bunch plasma accelerator is formulated.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Laser-Wakefield Electron Beams as Drivers of High-Quality Positron Beams and Inverse-Compton-Scattered Photon Beams [J].
Alejo, Aaron ;
Samarin, Guillermo M. ;
Warwick, Jonathan R. ;
Sarri, Gianluca .
FRONTIERS IN PHYSICS, 2019, 7 (APR)
[2]   Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field [J].
Arefiev, Alexey V. ;
Cochran, Ginevra E. ;
Schumacher, Douglass W. ;
Robinson, Alexander P. L. ;
Chen, Guangye .
PHYSICS OF PLASMAS, 2015, 22 (01)
[3]   ENERGY-TRANSFER IN THE PLASMA WAKE-FIELD ACCELERATOR [J].
CHEN, P ;
SU, JJ ;
DAWSON, JM ;
BANE, KLF ;
WILSON, PB .
PHYSICAL REVIEW LETTERS, 1986, 56 (12) :1252-1255
[4]   LIGHT PIPE FOR HIGH-INTENSITY LASER-PULSES [J].
DURFEE, CG ;
MILCHBERG, HM .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2409-2412
[5]   DEVELOPMENT OF A PLASMA WAVE-GUIDE FOR HIGH-INTENSITY LASER-PULSES [J].
DURFEE, CG ;
LYNCH, J ;
MILCHBERG, HM .
PHYSICAL REVIEW E, 1995, 51 (03) :2368-2389
[6]   Physics of laser-driven plasma-based electron accelerators [J].
Esarey, E. ;
Schroeder, C. B. ;
Leemans, W. P. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1229-1285
[7]   Generating positrons with femtosecond-laser pulses [J].
Gahn, C ;
Tsakiris, GD ;
Pretzler, G ;
Witte, KJ ;
Delfin, C ;
Wahlström, CG ;
Habs, D .
APPLIED PHYSICS LETTERS, 2000, 77 (17) :2662-2664
[8]   Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide [J].
Gonsalves, A. J. ;
Nakamura, K. ;
Daniels, J. ;
Benedetti, C. ;
Pieronek, C. ;
de Raadt, T. C. H. ;
Steinke, S. ;
Bin, J. H. ;
Bulanov, S. S. ;
van Tilborg, J. ;
Geddes, C. G. R. ;
Schroeder, C. B. ;
Toth, Cs. ;
Esarey, E. ;
Swanson, K. ;
Fan-Chiang, L. ;
Bagdasarov, G. ;
Bobrova, N. ;
Gasilov, V. ;
Korn, G. ;
Sasorov, P. ;
Leemans, W. P. .
PHYSICAL REVIEW LETTERS, 2019, 122 (08)
[9]  
Hooker SM, 2013, NAT PHOTONICS, V7, P775, DOI [10.1038/nphoton.2013.234, 10.1038/NPHOTON.2013.234]
[10]   QuickPIC: a highly efficient fully parallelized PIC code for plasma-based acceleration [J].
Huang, C. ;
Decyk, V. K. ;
Zhou, M. ;
Lu, W. ;
Mori, W. B. ;
Cooley, J. H. ;
Antonsen, T. M., Jr. ;
Feng, B. ;
Katsouleas, T. ;
Vieira, J. ;
Silva, L. O. .
SCIDAC 2006: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2006, 46 :190-199