A 90 nm CMOS, 6 μW Power-Proportional Acoustic Sensing Frontend for Voice Activity Detection

被引:89
作者
Badami, Komail M. H. [1 ]
Lauwereins, Steven [1 ]
Meert, Wannes [2 ]
Verhelst, Marian [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elektrotech ESAT MICAS, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
关键词
Acoustic frontend; analog machine learning; context-aware computing; hierarchical computing; scalable low power analog; voice activity detection (VAD); ANALOG; SYSTEM; END;
D O I
10.1109/JSSC.2015.2487276
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a sub-6 mu W acoustic frontend for speech/non-speech classification in a voice activity detection (VAD) in 90 nm CMOS. Power consumption of the VAD system is minimized by architectural design around a new power-proportional sensing paradigm and the use of machine-learning-assisted moderate-precision analog analytics for classification. Power-proportional sensing allows for hierarchical and context-aware scaling of the frontend's power consumption depending on the complexity of the ongoing information extraction, while the use of analog analytics brings increased power efficiency through switching ON/OFF the computation of individual features depending on the features' usefulness in a particular context. The proposed VAD system reduces the power consumption by 10x as compared to state-of-the-art (SotA) systems and yet achieves an 89% average hit rate (HR) for a 12 dB signal-to-acoustic-noise ratio (SANR) in babble context, which is at par with software-based VAD systems.
引用
收藏
页码:291 / 302
页数:12
相关论文
empty
未找到相关数据