A 90 nm CMOS, 6 μW Power-Proportional Acoustic Sensing Frontend for Voice Activity Detection

被引:89
作者
Badami, Komail M. H. [1 ]
Lauwereins, Steven [1 ]
Meert, Wannes [2 ]
Verhelst, Marian [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elektrotech ESAT MICAS, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
关键词
Acoustic frontend; analog machine learning; context-aware computing; hierarchical computing; scalable low power analog; voice activity detection (VAD); ANALOG; SYSTEM; END;
D O I
10.1109/JSSC.2015.2487276
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a sub-6 mu W acoustic frontend for speech/non-speech classification in a voice activity detection (VAD) in 90 nm CMOS. Power consumption of the VAD system is minimized by architectural design around a new power-proportional sensing paradigm and the use of machine-learning-assisted moderate-precision analog analytics for classification. Power-proportional sensing allows for hierarchical and context-aware scaling of the frontend's power consumption depending on the complexity of the ongoing information extraction, while the use of analog analytics brings increased power efficiency through switching ON/OFF the computation of individual features depending on the features' usefulness in a particular context. The proposed VAD system reduces the power consumption by 10x as compared to state-of-the-art (SotA) systems and yet achieves an 89% average hit rate (HR) for a 12 dB signal-to-acoustic-noise ratio (SANR) in babble context, which is at par with software-based VAD systems.
引用
收藏
页码:291 / 302
页数:12
相关论文
共 28 条
  • [1] Badami K., 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, P1
  • [2] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [3] Chen EH, 2009, SYMP VLSI CIRCUITS, P12
  • [4] Design and Analysis of a Hardware-Efficient Compressed Sensing Architecture for Data Compression in Wireless Sensors
    Chen, Fred
    Chandrakasan, Anantha P.
    Stojanovic, Vladimir M.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (03) : 744 - 756
  • [5] MEASUREMENT OF ACOUSTIC INTENSITY USING CROSS-SPECTRAL DENSITY OF 2 MICROPHONE SIGNALS
    FAHY, FJ
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1977, 62 (04) : 1057 - 1059
  • [6] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [7] Development and analysis of an International Speech Test Signal (ISTS)
    Holube, Inga
    Fredelake, Stefan
    Vlaming, Marcel
    Kollmeier, Birger
    [J]. INTERNATIONAL JOURNAL OF AUDIOLOGY, 2010, 49 (12) : 891 - 903
  • [8] VOWEL DURATION IN ENGLISH
    HOUSE, AS
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1961, 33 (09) : 1174 - &
  • [9] A 48.6-to-105.2 μW Machine Learning Assisted Cardiac Sensor SoC for Mobile Healthcare Applications
    Hsu, Shu-Yu
    Ho, Yingchieh
    Chang, Po-Yao
    Su, Chauchin
    Lee, Chen-Yi
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (04) : 801 - 811
  • [10] Subjective comparison and evaluation of speech enhancement algorithms
    Hu, Yi
    Loizou, Philipos C.
    [J]. SPEECH COMMUNICATION, 2007, 49 (7-8) : 588 - 601