Non-parametric regression in clustered multistate current status data with informative cluster size

被引:3
作者
Lan, Ling [1 ]
Bandyopadhyay, Dipankar [2 ]
Datta, Somnath [3 ]
机构
[1] Augusta Univ, Dept Biostat & Epidemiol, Augusta, GA 30912 USA
[2] Virginia Commonwealth Univ, Dept Biostat, Med Coll Virginia Campus, Richmond, VA 23298 USA
[3] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
censoring; Markov; multivariate time-to-event data; state occupation probability; periodontal disease; FAILURE TIME DATA; STAGE OCCUPATION PROBABILITIES; INTEGRATED TRANSITION HAZARDS; RIGHT-CENSORED-DATA; PERIODONTAL-DISEASE; COMPETING RISKS; SURVIVAL-DATA; MODELS; INFERENCE; ENTRY;
D O I
10.1111/stan.12099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Datasets examining periodontal disease records current (disease) status information of tooth-sites, whose stochastic behavior can be attributed to a multistate system with state occupation determined at a single inspection time. In addition, the tooth-sites remain clustered within a subject, and the number of available tooth-sites may be representative of the true periodontal disease status of that subject, leading to an 'informative cluster size' scenario. To provide insulation against incorrect model assumptions, we propose a non-parametric regression framework to estimate state occupation probabilities at a given time and state exit/entry distributions, utilizing weighted monotonic regression and smoothing techniques. We demonstrate the superior performance of our proposed weighted estimators over the unweighted counterparts via a simulation study and illustrate the methodology using a dataset on periodontal disease.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 54 条
[1]   Regression analysis for multistate models based on a pseudo-value approach, with applications to bone marrow transplantation studies [J].
Andersen, Per K. ;
Klein, John P. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (01) :3-16
[2]   Inference for outcome probabilities in multi-state models [J].
Andersen, Per Kragh ;
Perme, Maja Pohar .
LIFETIME DATA ANALYSIS, 2008, 14 (04) :405-431
[3]   Generalised linear models for correlated pseudo-observations, with applications to multi-state models [J].
Andersen, PK ;
Klein, JP ;
Rosthoj, S .
BIOMETRIKA, 2003, 90 (01) :15-27
[4]  
Andersen PK, 2002, STAT METHODS MED RES, V11, P91, DOI 10.1191/0962280202SM276ra
[5]  
[Anonymous], 1964, Theory Probab. Appl, DOI [10.1137/1109020, DOI 10.1137/1109020]
[6]  
[Anonymous], 1964, Sankhya, DOI DOI 10.2307/25049340
[7]  
Armitage G C, 1999, Ann Periodontol, V4, P1, DOI 10.1902/annals.1999.4.1.1
[8]  
Burr D., 2002, On nonparametric regression for current status data
[9]   Semiparametric regression analysis for clustered failure time data [J].
Cai, T ;
Wei, LJ ;
Wilcox, M .
BIOMETRIKA, 2000, 87 (04) :867-878
[10]   A marginal mixed baseline hazards model for multivariate failure time data [J].
Clegg, LMX ;
Cai, JW ;
Sen, PK .
BIOMETRICS, 1999, 55 (03) :805-812