VISUAL SALIENT SIFT KEYPOINTS DESCRIPTORS FOR AUTOMATIC TARGET RECOGNITION

被引:0
作者
Karine, Ayoub [1 ,3 ]
Toumi, Abdelmalek [3 ]
Khenchaf, Ali [3 ]
El Hassouni, Mohammed [1 ,2 ]
机构
[1] Mohammed V Univ Rabat, LRIT, Associated Unit CNRST URAC 29, Fac Sci, BP 1014 RP, Rabat, Morocco
[2] Mohammed V Univ Rabat, DESTEC, FLSHR, Rabat, Morocco
[3] ENSTA Bretagne, Lab STICC UMR CNRS 6285, F-29806 Brest 9, France
来源
PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP) | 2016年
关键词
Automatic target recognition; inverse synthetic aperture radar; SIFT; visual attention model; classification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of automatic target recognition (ATR) using inverse synthetic aperture radar (ISAR) images. In this context, we propose a novel approach for feature extraction to describe precisely an aircraft target from ISAR images. In our approach, a visual attention model is adopted to separate the salient regions from the background. After that, the scale invariant feature transform (SIFT) method is used to extract the keypoints and their descriptors. Then, a local salient feature is built by considering only the keypoints located in the salient region. For the classification step, the support vector machines (SVM) classifier is adopted. To validate the proposed approach, ISAR images database which was collected from anechoic chamber is used.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] SAR Automatic Target Recognition Using Transfer Learning Approach
    Al Mufti, Maha
    Al Hadhrami, Esra
    Taha, Bilal
    Werghi, Naoufel
    [J]. 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS), 2018, : 1 - 4
  • [42] Action Recognition Using Local Visual Descriptors and Inertial Data
    Alhersh, Taha
    Belhaouari, Samir Brahim
    Stuckenschmidt, Heiner
    [J]. AMBIENT INTELLIGENCE (AMI 2019), 2019, 11912 : 123 - 138
  • [43] Automatic Facial Expression Recognition Using Features of Salient Facial Patches
    Happy, S. L.
    Routray, Aurobinda
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2015, 6 (01) : 1 - 12
  • [44] ISAR target parameter estimation with application for automatic target recognition
    Melendez, KA
    Bennett, JR
    [J]. RADAR PROCESSING, TECHNOLOGY, AND APPLICATIONS III, 1998, 3462 : 2 - 13
  • [45] Automatic target recognition for naval traffic control using neural networks
    Pasquariello, G
    Satalino, G
    la Forgia, V
    Spilotros, F
    [J]. IMAGE AND VISION COMPUTING, 1998, 16 (02) : 67 - 73
  • [46] ARTIFICIAL NEURAL NETWORKS FOR AUTOMATIC TARGET RECOGNITION
    DANIELL, CE
    KEMSLEY, DH
    LINCOLN, WP
    TACKETT, WA
    BARAGHIMIAN, GA
    [J]. OPTICAL ENGINEERING, 1992, 31 (12) : 2521 - 2531
  • [47] Automatic Target Recognition Using Multiple-Aspect Sonar Images
    Wang, Xiaoguang
    Liu, Xuan
    Japkowicz, Nathalie
    Matwin, Stan
    Bao Nguyen
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 2330 - 2337
  • [48] Performance modeling for automatic target recognition systems
    Catlin, A
    Myers, L
    Bauer, K
    Rogers, S
    Broussard, R
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY IV, 1997, 3070 : 185 - 193
  • [49] Time series modeling for automatic target recognition
    Sokolnikov, Andre
    [J]. AUTOMATIC TARGET RECOGNITION XXII, 2012, 8391
  • [50] A Compact Methodology to Understand, Evaluate, and Predict the Performance of Automatic Target Recognition
    Li, Yanpeng
    Li, Xiang
    Wang, Hongqiang
    Chen, Yiping
    Zhuang, Zhaowen
    Cheng, Yongqiang
    Deng, Bin
    Wang, Liandong
    Zeng, Yonghu
    Gao, Lei
    [J]. SENSORS, 2014, 14 (07): : 11308 - 11350