Dynamical invariants in a non-Markovian quantum-state-diffusion equation

被引:10
作者
Luo, Da-Wei [1 ,2 ,3 ]
Pyshkin, P. V. [1 ,2 ,3 ]
Lam, Chi-Hang [4 ]
Yu, Ting [1 ,5 ,6 ]
Lin, Hai-Qing [1 ]
You, J. Q. [1 ]
Wu, Lian-Ao [2 ,3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[2] Basque Country Univ UPV EHU, Dept Theoret Phys & Hist Sci, Bilbao 48080, Spain
[3] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain
[4] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China
[5] Stevens Inst Technol, Ctr Controlled Quantum Syst, Hoboken, NJ 07030 USA
[6] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 06期
基金
中国国家自然科学基金;
关键词
DEPENDENT HARMONIC-OSCILLATOR; HAMILTONIANS; SYSTEMS;
D O I
10.1103/PhysRevA.92.062127
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We find dynamical invariants for open quantum systems described by the non-Markovian quantum-statediffusion (QSD) equation. In stark contrast to closed systems where the dynamical invariant can be identical to the system density operator, these dynamical invariants no longer share the equation of motion for the density operator. Moreover, the invariants obtained with a biorthonormal basis can be used to render an exact solution to the QSD equation and the corresponding non-Markovian dynamics without using master equations or numerical simulations. Significantly we show that we can apply these dynamical invariants to reverse engineering a Hamiltonian that is capable of driving the system to the target state, providing a different way to design control strategy for open quantum systems.
引用
收藏
页数:5
相关论文
共 36 条
[1]   Non-Markovian effects on the dynamics of entanglement [J].
Bellomo, B. ;
Lo Franco, R. ;
Compagno, G. .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[2]  
Breuer H. P., 2002, The Theory of Open Quantum Systems
[3]   Non-Markovian quantum state diffusion for an open quantum system in fermionic environments [J].
Chen, Mi ;
You, J. Q. .
PHYSICAL REVIEW A, 2013, 87 (05)
[4]   Lewis-Riesenfeld invariants and transitionless quantum driving [J].
Chen, Xi ;
Torrontegui, E. ;
Muga, J. G. .
PHYSICAL REVIEW A, 2011, 83 (06)
[5]   Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach [J].
Chen, Yusui ;
You, J. Q. ;
Yu, Ting .
PHYSICAL REVIEW A, 2014, 90 (05)
[6]   Non-Markovian quantum state diffusion [J].
Diosi, L ;
Gisin, N ;
Strunz, WT .
PHYSICAL REVIEW A, 1998, 58 (03) :1699-1712
[8]   Non-Markovian continuous quantum measurement of retarded observables [J].
Diosi, Lajos .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[9]   INVARIANTS AND GEOMETRIC PHASE FOR SYSTEMS WITH NON-HERMITIAN TIME-DEPENDENT HAMILTONIANS [J].
GAO, XC ;
XU, JB ;
QIAN, TZ .
PHYSICAL REVIEW A, 1992, 46 (07) :3626-3630
[10]   QUANTUM BROWNIAN-MOTION IN A GENERAL ENVIRONMENT - EXACT MASTER EQUATION WITH NONLOCAL DISSIPATION AND COLORED NOISE [J].
HU, BL ;
PAZ, JP ;
ZHANG, YH .
PHYSICAL REVIEW D, 1992, 45 (08) :2843-2861