Use of orthogonal polynomial approximations for inference in exponential distribution based on K-sample doubly Type-II censored data

被引:3
作者
Sanjel, Deepak
Balakrishnan, N.
机构
[1] Minnesota State Univ, Dept Math & Stat, Mankato, MN 56001 USA
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
best linear unbiased estimators; density approximants; doubly Type-II censored samples; exponential distribution; Hermite polynomials; interval estimation; Laguerre polynomials; maximum likelihood estimates; symbolic computation;
D O I
10.1080/03610920600920511
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hermite and Laguerre polynomial density approximants have been utilized in order to make inference for the location and scale parameters of an exponential distribution based on K-sample Type-II censored data. First, we evaluate the exact moments of the pivots based on the Best Linear Unbiased Estimators (BLUEs) of the parameters and then, based on these moments, their density approximations are obtained using orthogonal polynomials. A comparative study of the percentiles obtained from the orthogonal polynomial approximation of the distributions of the pivots and the resulting interval estimation of the parameters to the corresponding exact numerical results of Balakrishnan and Lin (2005) and Balakrishnan et al. (2004) is carried out. A comparison is also made with the approximate inference based on the maximum likelihood estimators (MLEs) of the parameters. These comparative studies reveal that the proposed density approximant-based techniques provide very accurate inference.
引用
收藏
页码:1671 / 1683
页数:13
相关论文
共 14 条
[1]  
Arnold B. C., 1998, A First Course in Order Statistics
[2]   Exact inference and prediction for K-sample exponential case under type-II censoring [J].
Balakrishnan, N ;
Lin, CT .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2005, 75 (05) :315-331
[3]   Exact inference and prediction for K-sample two-parameter exponential case under general Type-II censoring [J].
Balakrishnan, N ;
Lin, CT ;
Chan, PS .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (12) :867-878
[4]  
Balakrishnan N, 1998, HANDB STAT, V17, P25, DOI 10.1016/S0169-7161(98)17004-9
[5]  
Balakrishnan N., 1995, EXPONENTIAL DISTRIBU
[6]  
Balakrishnan N., 1991, ORDER STAT INFERENCE
[7]  
BLIGHT BJN, 1970, BIOMETRIKA, V57, P389, DOI 10.2307/2334847
[8]  
Cohen A.C., 1988, Parameter Estimation in Reliability and Life SPAN Models
[9]   SOME THEOREMS RELEVANT TO LIFE TESTING FROM AN EXPONENTIAL DISTRIBUTION [J].
EPSTEIN, B ;
SOBEL, M .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (02) :373-381
[10]  
GARDSHTEYN IS, 1980, TABLES INTEGRALS SER