A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images

被引:29
作者
Raghavendra, U. [1 ]
Gudigar, Anjan [1 ]
Bhandary, Sulatha V. [2 ]
Rao, Tejaswi N. [1 ]
Ciaccio, Edward J. [3 ]
Acharya, U. Rajendra [4 ,5 ,6 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Instrumentat & Control Engn, Manipal 576104, Karnataka, India
[2] Manipal Acad Higher Educ, Kasturba Med Coll, Dept Ophthalmol, Manipal 576104, Karnataka, India
[3] Columbia Univ, Dept Med, New York, NY USA
[4] Ngee Ann Polytech, Dept Elect & Comp Engn, Clementi 599489, Singapore
[5] SUSS Univ, Sch Sci & Technol, Dept Biomed Engn, Clementi 599491, Singapore
[6] Taylors Univ, Fac Hlth & Med Sci, Sch Med, Subang Jaya, Malaysia
关键词
CAD; Cascade; Glaucoma; Sparse autoencoder; AUTOMATED DIAGNOSIS; NETWORK;
D O I
10.1007/s10916-019-1427-x
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F-measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
引用
收藏
页数:9
相关论文
共 38 条
  • [1] Acharya R, 2008, ARTECH HSE BIOINF BI, P1
  • [2] A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images
    Acharya, U. Rajendra
    Bhat, Shreya
    Koh, Joel E. W.
    Bhandary, Sulatha V.
    Adeli, Hojjat
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 88 : 72 - 83
  • [3] Decision support system for the glaucoma using Gabor transformation
    Acharya, U. Rajendra
    Ng, E. Y. K.
    Eugene, Lim Wei Jie
    Noronha, Kevin P.
    Min, Lim Choo
    Nayak, K. Prabhakar
    Bhandary, Sulatha V.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 15 : 18 - 26
  • [4] Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features
    Acharya, U. Rajendra
    Dua, Sumeet
    Du, Xian
    Sree, Vinitha S.
    Chua, Chua Kuang
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (03): : 449 - 455
  • [5] Annu N., 2013, Int. J. Eng. Technol., P1716
  • [6] [Anonymous], 2004, ARCH OPHTHALMOL-CHIC, V122, P532, DOI DOI 10.1001/ARCHOPHT.122.4.532
  • [7] [Anonymous], 1993, ser. PrenticeHall Signal Processing Series
  • [8] [Anonymous], COMPUT BIOL MED
  • [9] [Anonymous], EURASIP J WIREL COMM
  • [10] [Anonymous], 2014, INT C INF COMM EMB S