Three-dimensional structure of a string-fluid complex plasma

被引:21
作者
Pustylnik, M. Y. [1 ]
Klumov, B. [1 ,2 ,3 ]
Rubin-Zuzic, M. [1 ]
Lipaev, A. M. [2 ,3 ]
Nosenko, V [1 ]
Erdle, D. [1 ]
Usachev, A. D. [2 ]
Zobnin, A., V [2 ]
Molotkov, V., I [2 ]
Joyce, G. [4 ]
Thomas, H. M. [1 ]
Thoma, M. H. [5 ]
Petrov, O. F. [2 ,3 ]
Fortov, V. E. [2 ]
Kononenko, O. [6 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, Munchener Str 20, D-82234 Wessling, Germany
[2] Russian Acad Sci, Inst High Temp, Izhorskaya 13-19, Moscow 125412, Russia
[3] Moscow Inst Phys & Technol, Inst Sky Lane 9, Dolgoprudnyi 141700, Moscow Region, Russia
[4] Naval Res Lab, Code 7600,4555 Overlook Ave SW, Washington, DC 20375 USA
[5] Justus Liebig Univ Giessen, Phys Inst 1, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[6] Gagarin Res & Test Cosmonaut Training Ctr, Star City 141160, Moscow Region, Russia
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
俄罗斯科学基金会;
关键词
BOND-ORIENTATIONAL ORDER;
D O I
10.1103/PhysRevResearch.2.033314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Three-dimensional structure of complex (dusty) plasmas was investigated under long-term microgravity conditions in the Plasmakristall-4 facility on the International Space Station. The microparticle suspensions were confined in a polarity-switched dc discharge. The experimental results were compared to the results of the molecular dynamics simulations with the interparticle interaction potential represented as a superposition of isotropic Yukawa and anisotropic quadrupole terms. Both simulated and experimental data exhibited qualitatively similar structural features, indicating the bulk liquid-like order with the inclusion of solid-like strings aligned with the axial electric field. Individual strings were identified and their size spectrum was calculated. The decay rate of the size spectrum was found to decrease with the enhancement of string-like structural features.
引用
收藏
页数:7
相关论文
共 42 条
[1]  
Allen M.P., 2017, COMPUTER SIMULATION
[2]   Particle charge in PK-4 dc discharge from ground-based and microgravity experiments [J].
Antonova, T. ;
Khrapak, S. A. ;
Pustylnik, M. Y. ;
Rubin-Zuzic, M. ;
Thomas, H. M. ;
Lipaev, A. M. ;
Usachev, A. D. ;
Molotkov, V. I. ;
Thoma, M. H. .
PHYSICS OF PLASMAS, 2019, 26 (11)
[3]   Magnetorheological fluids: Materials, characterization, and devices [J].
Ashour, O ;
Rogers, CA ;
Kordonsky, W .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1996, 7 (02) :123-130
[4]   LASER DIFFRACTION DETERMINATION OF THE CRYSTALLINE-STRUCTURE OF AN ELECTRORHEOLOGICAL FLUID [J].
CHEN, TJ ;
ZITTER, RN ;
TAO, R .
PHYSICAL REVIEW LETTERS, 1992, 68 (16) :2555-2558
[5]   Structure of electrorheological fluids [J].
Dassanayake, U ;
Fraden, S ;
van Blaaderen, A .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (08) :3851-3858
[6]   Magnetorheological fluids: a review [J].
de Vicente, Juan ;
Klingenberg, Daniel J. ;
Hidalgo-Alvarez, Roque .
SOFT MATTER, 2011, 7 (08) :3701-3710
[7]   Model experiment for studying lane formation in binary complex plasmas [J].
Du, C. -R. ;
Suetterlin, K. R. ;
Ivlev, A. V. ;
Thomas, H. M. ;
Morfill, G. E. .
EPL, 2012, 99 (04)
[8]   Experimental investigation on lane formation in complex plasmas under microgravity conditions [J].
Du, C-R ;
Suetterlin, K. R. ;
Jiang, K. ;
Raeth, C. ;
Ivlev, A. V. ;
Khrapak, S. ;
Schwabe, M. ;
Thomas, H. M. ;
Fortov, V. E. ;
Lipaev, A. M. ;
Molotkov, V. I. ;
Petrov, O. F. ;
Malentschenko, Y. ;
Yurtschichin, F. ;
Lonchakov, Y. ;
Morfill, G. E. .
NEW JOURNAL OF PHYSICS, 2012, 14
[9]  
Fortov V. E., 2009, COMPLEX DUSTY PLASMA
[10]   Complex (dusty) plasmas: Current status, open issues, perspectives [J].
Fortov, VE ;
Ivlev, AV ;
Khrapak, SA ;
Khrapak, AG ;
Morfill, GE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 421 (1-2) :1-103