Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria

被引:80
作者
Sbragaglia, M. [1 ,2 ]
Benzi, R. [1 ,2 ]
Biferale, L. [1 ,2 ]
Chen, H. [3 ]
Shan, X. [3 ]
Succi, S. [4 ]
机构
[1] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, I-00133 Rome, Italy
[3] EXA Corp, Burlington, MA 01803 USA
[4] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
关键词
EQUATION;
D O I
10.1017/S002211200900665X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Lattice kinetic equations incorporating the effects of external / internal force fields via a shift of the local fields in the local equilibria are placed within the framework of continuum kinetic theory. The mathematical treatment reveals that in order to be consistent with the correct thermo-hydrodynamical description, temperature must also be shifted, besides momentum. New perspectives for the formulation of thermo-hydrodynamic lattice kinetic models of non-ideal fluids are then envisaged. It is also shown that on the lattice, the definition of the macroscopic temperature requires the inclusion of new terms directly related to discrete effects. The theoretical treatment is tested against a controlled case with a non-ideal equation of state.
引用
收藏
页码:299 / 309
页数:11
相关论文
共 28 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]  
[Anonymous], 1964, Zh. Eksp. Teor. Fiz
[3]  
[Anonymous], 2000, TABLES INTEGRALS SER
[4]   Kinetic boundary conditions in the lattice Boltzmann method [J].
Ansumali, S ;
Karlin, IV .
PHYSICAL REVIEW E, 2002, 66 (02) :1-026311
[5]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[6]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[7]  
BOGHOSIAN BM, 2008, ARXIV08102344V1
[8]  
Brennen C.E., 2005, Fundamentals of multiphase flow
[9]   Gravity in a lattice Boltzmann model [J].
Buick, JM ;
Greated, CA .
PHYSICAL REVIEW E, 2000, 61 (05) :5307-5320
[10]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364