Comparative physiological and biochemical mechanisms of drought tolerance in three contrasting cultivars of quinoa (Chenopodium quinoa)

被引:1
|
作者
Zhang, Yemeng [1 ,2 ,3 ]
Yang, Qian [1 ,2 ]
Zhu, Lili [1 ,2 ,3 ]
Chen, Zhiguo [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Northwest Inst Plateau Biol, Xining 810001, Peoples R China
[2] Chinese Acad Sci, Inst Three River Source Natl Pk, Xining 810001, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100081, Peoples R China
来源
ANALES DEL JARDIN BOTANICO DE MADRID | 2022年 / 79卷 / 01期
关键词
Quinoa; drought; reactive oxygen species; antioxidants; germination; ELECTROLYTE LEAKAGE; STRESS; WILLD; METABOLISM; PLANTS; EXPRESSION; NUTRIENTS; PROLINE; HEAT; H2O2;
D O I
10.3989/ajbm.2625
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Quinoa (Chenopodium quinoa Wild.) is a halophytic, pseudocereal crop, which has a richer nutritional value than other major cereals and is highly resistant to multiple abiotic stresses. In this study, the germination characteristics, morphological, physiological and biochemical changes of three contrasting quinoa cultivars under drought stress were compared. The results indicated that 'Chaidamuhong' and 'Gongzha No.3' showed stronger drought tolerance than 'Qingli No.1'. This was mainly manifest in seed germination index, activity of antioxidant enzymes, cell membrane damage and morphological changes. We speculate that the increase in the activity of many antioxidant enzymes and the lower stomatal density make 'Chaidamuhong' and 'Gongzha No.3' superior in release of reactive oxygen species and water retention than 'Qingli No.1', thus reducing the degree of cell damage, and improving drought resistance.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Physiological and Biochemical Characteristics and Response Patterns of Salinity Stress Responsive Genes (SSRGs) in Wild Quinoa (Chenopodium quinoa L.)
    Jiang, Yurong
    Yasir, Muhammad
    Cao, Yuefen
    Hu, Lejia
    Yan, Tongli
    Zhu, Shuijin
    Lu, Guoquan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (02) : 399 - 410
  • [32] Multivariate characterization of biochemical and physiological attributes of quinoa (Chenopodium quinoa Willd.) genotypes exposed to nickel stress: implications for phytoremediation
    Aslam, Maria
    Sonia, Mbarki
    Abbas, Ghulam
    Shahid, Muhammad
    Murtaza, Behzad
    Khalid, Muhmmad Shafique
    Qaisrani, Saeed Ahmad
    Alharby, Hesham F.
    Alghamdi, Sameera A.
    Alharbi, Basmah M.
    Chen, Yinglong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (44) : 99247 - 99259
  • [33] Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress
    Parvez, Shumaila
    Abbas, Ghulam
    Shahid, Muhammad
    Amjad, Muhammad
    Hussain, Munawar
    Asad, Saeed Ahmad
    Imran, Muhammad
    Naeem, Muhammad Asif
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 187
  • [34] Differential Effect of Heat Stress on Drought and Salt Tolerance Potential of Quinoa Genotypes: A Physiological and Biochemical Investigation
    Abbas, Ghulam
    Areej, Fiza
    Asad, Saeed Ahmad
    Saqib, Muhammad
    Anwar-ul-Haq, Muhammad
    Afzal, Saira
    Murtaza, Behzad
    Amjad, Muhammad
    Naeem, Muhammad Asif
    Akram, Muhammad
    Akhtar, Naseem
    Aftab, Muhammad
    Siddique, Kadambot H. M.
    PLANTS-BASEL, 2023, 12 (04):
  • [35] Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations
    Kammann, Claudia Irene
    Linsel, Sebastian
    Goessling, Johannes W.
    Koyro, Hans-Werner
    PLANT AND SOIL, 2011, 345 (1-2) : 195 - 210
  • [36] Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars
    Ruiz, R. A.
    Bertero, H. D.
    EUROPEAN JOURNAL OF AGRONOMY, 2008, 29 (2-3) : 144 - 152
  • [37] Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability
    Iftikhar Hussain, M.
    Al-Dakheel, Abdullah J.
    Reigosa, Manuel J.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 129 : 411 - 420
  • [38] The yield and physiological properties of quinoa (Chenopodium quinoa) genotypes affected by chelated nano-silicon and micronutrients under drought stress conditions
    Esmaielzehi, Afsaneh
    Mehraban, Ahmad
    Mobasser, Hamidreza
    Ganjali, Hamidreza
    Miri, Khaled
    SCIENTIA HORTICULTURAE, 2024, 334
  • [39] Effects of arsenite on physiological, biochemical and grain yield attributes of quinoa (Chenopodium quinoa Willd.): implications for phytoremediation and health risk assessment
    Shabbir, Arslan
    Abbas, Ghulam
    Asad, Saeed Ahmad
    Razzaq, Hina
    Anwar-ul-Haq, Muhammad
    Amjad, Muhammad
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2021, 23 (09) : 890 - 898
  • [40] Correction to: Multivariate characterization of biochemical and physiological attributes of quinoa (Chenopodium quinoa Willd.) genotypes exposed to nickel stress: implications for phytoremediation
    Maria Aslam
    Mbarki Sonia
    Ghulam Abbas
    Muhammad Shahid
    Behzad Murtaza
    Muhmmad Shafique Khalid
    Saeed Ahmad Qaisrani
    Hesham F. Alharby
    Sameera A. Alghamdi
    Basmah M. Alharbi
    Yinglong Chen
    Environmental Science and Pollution Research, 2023, 30 : 99260 - 99260