Holonomic quantum computation

被引:819
|
作者
Zanardi, P [1 ]
Rasetti, M
机构
[1] Ist Nazl Fis Mat, I-16152 Genoa, Italy
[2] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
D O I
10.1016/S0375-9601(99)00803-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops in the control M induce non trivial unitary transformations on the computational space. For a generic system it is shown that this mechanism allows for universal quantum computation by composing a generic pair of loops in M. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [1] Holonomic quantum computation
    Zanardi, Paolo
    Rasetti, Mario
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 264 (2-3): : 94 - 99
  • [2] Decoherence in holonomic quantum computation
    Florio, Giuseppe
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2006, 13 (03): : 263 - 272
  • [3] Holonomic Quantum Computation in Subsystems
    Oreshkov, Ognyan
    PHYSICAL REVIEW LETTERS, 2009, 103 (09)
  • [4] Geometric and holonomic quantum computation
    Zhang, Jiang
    Kyaw, Thi Ha
    Filipp, Stefan
    Kwek, Leong-Chuan
    Sjoqvist, Erik
    Tong, Dianmin
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1027 : 1 - 53
  • [5] Composite nonadiabatic holonomic quantum computation
    Xu, G. F.
    Zhao, P. Z.
    Xing, T. H.
    Sjoqvist, Erik
    Tong, D. M.
    PHYSICAL REVIEW A, 2017, 95 (03)
  • [6] Holonomic quantum computation with Josephson networks
    Siewert, J
    Faoro, L
    Fazio, R
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2002, 233 (03): : 490 - 496
  • [7] Advances in nonadiabatic holonomic quantum computation
    Zhao, Peizi
    Xu, Guofu
    Tong, Dianmin
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (16): : 1935 - 1945
  • [8] Holonomic quantum computation in the presence of decoherence
    Fuentes-Guridi, I
    Girelli, F
    Livine, E
    PHYSICAL REVIEW LETTERS, 2005, 94 (02) : 1 - 4
  • [9] Exact solutions of holonomic quantum computation
    Tanimura, S
    Hayashi, D
    Nakahara, M
    PHYSICS LETTERS A, 2004, 325 (3-4) : 199 - 205
  • [10] Control aspects of holonomic quantum computation
    Lucarelli, D
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)