Bayesian ordinal regression for multiple criteria choice and ranking

被引:15
作者
Ru, Zice [1 ]
Liu, Jiapeng [1 ]
Kadzinski, Milosz [2 ]
Liao, Xiuwu [1 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Management, Ctr Intelligent Decis Making & Machine Learning, Xian 710049, Shaanxi, Peoples R China
[2] Poznan Univ Tech, Inst Comp Sci, Piotrowo 2, PL-60965 Poznan, Poland
[3] Hubei Univ Econ, Collaborat Innovat Ctr China Pilot Reform Explora, Hubei Sub Ctr, Wuhan 430205, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Decision analysis; Ordinal regression; Bayesian inference; Stochastic acceptability analysis; Additive value function; PREFERENCE DISAGGREGATION; ACCEPTABILITY ANALYSIS; MULTICRITERIA RANKING; INTERACTING CRITERIA; SET; HIERARCHY; MODELS;
D O I
10.1016/j.ejor.2021.09.028
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a novel Bayesian Ordinal Regression approach for multiple criteria choice and ranking problems. It employs an additive value function model to represent indirect Decision Maker's (DM's) preferences in the form of pairwise comparisons of reference alternatives. By defining a likelihood for the provided preference information and specifying a prior of the preference model, we apply the Bayesian rule to derive a posterior distribution over a set of all potential value functions, not necessarily compatible ones. This distribution emphasizes the potential differences in the abilities of these models to reconstruct the DM's pairwise comparisons. Hence a distinctive character of our approach consists of characterizing the uncertainty in consequence of applying indirect preference information. We also employ a Markov Chain Monte Carlo algorithm, called the Metropolis-Hastings method, to summarize the posterior distribution of the value function model and quantify the outcomes of robustness analysis in the form of stochastic acceptability indices. The proposed approach's performance is investigated in a thorough experimental study involving real-world and artificially generated datasets. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:600 / 620
页数:21
相关论文
共 54 条
  • [1] Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece
    Angelopoulos, Dimitrios
    Siskos, Yannis
    Psarras, John
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 275 (01) : 252 - 265
  • [2] Robust sustainable development assessment with composite indices aggregating interacting dimensions: The hierarchical-SMAA-Choquet integral approach
    Angilella, Silvia
    Catalfo, Pierluigi
    Corrente, Salvatore
    Giarlotta, Alfio
    Greco, Salvatore
    Rizzo, Marcella
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 158 : 136 - 153
  • [3] Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model
    Angilella, Silvia
    Corrente, Salvatore
    Greco, Salvatore
    Slowinski, Roman
    [J]. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2016, 63 : 154 - 169
  • [4] Multiple criteria decision aiding as a prediction tool for migration potential of regions
    Arandarenko, Mihail
    Corrente, Salvatore
    Jandric, Maja
    Stamenkovic, Mladen
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 284 (03) : 1154 - 1166
  • [5] Robust stochastic sorting with interacting criteria hierarchically structured
    Arcidiacono, Sally Giuseppe
    Corrente, Salvatore
    Greco, Salvatore
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (02) : 735 - 754
  • [6] As simple as possible but not simpler in Multiple Criteria Decision Aiding: the robust-stochastic level dependent Choquet integral approach
    Arcidiacono, Sally Giuseppe
    Corrente, Salvatore
    Greco, Salvatore
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 280 (03) : 988 - 1007
  • [7] Water Use Scenarios Assessment usingMulticriteria Analysis
    Boggi, Antonio
    Rocchi, Lucia
    [J]. JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS, 2010, 17 (5-6) : 125 - 135
  • [8] On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application
    Bottero, M.
    Ferretti, V
    Figueira, J. R.
    Greco, S.
    Roy, B.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 271 (01) : 120 - 140
  • [9] Active Preference Elicitation by Bayesian Updating on Optimality Polyhedra
    Bourdache, Nadjet
    Perny, Patrice
    Spanjaard, Olivier
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2019, 2019, 11940 : 93 - 106
  • [10] Efficient pairwise preference elicitation allowing for indifference
    Branke, Juergen
    Corrente, Salvatore
    Greco, Salvatore
    Gutjahr, Walter
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2017, 88 : 175 - 186