Local atomic structures in grain boundaries of bulk nanocrystalline aluminium: A molecular dynamics simulation study

被引:18
|
作者
Hou, Zhaoyang [1 ]
Tian, Zean [2 ,3 ]
Mo, Yunfei [3 ]
Liu, Rangsu [3 ]
机构
[1] Changan Univ, Dept Appl Phys, Xian 710064, Peoples R China
[2] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[3] Hunan Univ, Sch Phys & Microelectron Sci, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Grain boundaries; Atomic cluster; Nanocrystalline aluminium; Molecular dynamics simulation; DEFORMATION; CRYSTALLINE; METALS;
D O I
10.1016/j.commatsci.2014.05.044
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructures of grain boundaries (GBs) in bulk nanocrystalline aluminium have been investigated by a large-scale molecular dynamics method. Bulk nanocrystalline aluminium is obtained directly by liquid quenching at an appropriate cooling rate, which has narrow grain-size distribution and high-angle GBs. It is found that up to 89.75% GB atoms (named as GB1 atoms) are located at the nearest-neighbour coordination shell around nanograins; others (named as GB2 atoms) are mainly at triple junctions. Local atomic structures in the GBs are quantified in terms of a recently developed method, in which the neighbours of an atom are identified with a parameter-free topological criterion rather than a fixed cut-off distance r(c). The results demonstrate that though there are a large number of different cluster types in both the GB1 and the GB2 regions, only a few ones with FCC-like order appear with high frequency in the GB1 region and play a crucial role in the microstructural feature of the GB1. The GB1 region displays short-to-long range order. The GB2 region presents ICO- and BCC-like short-range orders whose degrees are in between the liquid and amorphous, but the medium-range order at the cluster-scale is very weak. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [21] MOLECULAR DYNAMICS SIMULATION OF DISLOCATION EMISSION FROM SHOCKED ALUMINUM GRAIN BOUNDARIES
    Pozzi, C.
    Germann, T. C.
    Hoagland, R. G.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2009, PTS 1 AND 2, 2009, 1195 : 765 - +
  • [22] Molecular dynamics simulation of fracture behaviors of ⟨110⟩ tilt grain boundaries in γ-TiAl
    Zhao, Wen-juan
    Xu, Dong-sheng
    Zhao, Jing-wei
    Wang, Hao
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (11) : 3645 - 3651
  • [23] Shock responses of nanocrystalline molybdenum via molecular dynamics simulation: Grain size and shock intensity effects
    Lang, Zhe
    Xu, Chao
    Hu, Mingdong
    Li, Pengwei
    Hu, Ruiheng
    Shao, Meiyan
    Zhang, Jing
    Wang, Zhexi
    Liu, Huaping
    Liu, Chunmei
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (04)
  • [24] Grain Size Dependence of Creep in Nanocrystalline Copper by Molecular Dynamics
    Wang, Yun-Jiang
    Ishii, Akio
    Ogata, Shigenobu
    MATERIALS TRANSACTIONS, 2012, 53 (01) : 156 - 160
  • [25] The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation
    Zhang, Liang
    Lu, Cheng
    Tieu, Kiet
    Zhao, Xing
    Pei, Linqing
    NANOSCALE, 2015, 7 (16) : 7224 - 7233
  • [26] Molecular dynamics simulation of diffusion along general high-angle grain boundaries in copper and vanadium
    Vyazmin, A. V.
    Lipnitskii, A. G.
    Maksimenko, V. N.
    Poletaev, D. O.
    Kartamyshev, A. I.
    LETTERS ON MATERIALS, 2023, 13 (4S): : 450 - 455
  • [27] Molecular dynamics simulation on notch sensitivity of nanocrystalline Cu
    Wu, Hejun
    Tong, Shang
    Zhou, Jianqiu
    Zhang, Feng
    Yang, Baotong
    MICRO & NANO LETTERS, 2018, 13 (12): : 1724 - 1727
  • [28] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
    An, Minrong
    Su, Mengjia
    Deng, Qiong
    Song, Haiyang
    Wang, Chen
    Shang, Yu
    CHINESE PHYSICS B, 2020, 29 (04)
  • [29] Molecular dynamics study on the grain boundary dislocation source in nanocrystalline copper under tensile loading
    Zhang, Liang
    Lu, Cheng
    Tieu, Kiet
    Pei, Linqing
    Zhao, Xing
    Cheng, Kuiyu
    MATERIALS RESEARCH EXPRESS, 2015, 2 (03)
  • [30] Molecular Dynamics Simulation of the Tensile Deformation of ⟨110⟩ Tilt Grain Boundaries in Gamma TiAI
    Zhao, W. J.
    Xu, D. S.
    Wang, H.
    Yang, R.
    TI-2011: PROCEEDINGS OF THE 12TH WORLD CONFERENCE ON TITANIUM, VOL II, 2012, : 1563 - 1566