On Linear Clustering with Constraints on Cluster Size

被引:0
作者
Kimoto, Naoya [1 ]
Endo, Yasunori [2 ]
机构
[1] Univ Tsukuba, Masters Program Risk Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
来源
2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS) | 2018年
关键词
clustering; linear structure; constraints on cluster size;
D O I
10.1109/SCIS-ISIS.2018.00137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is unsupervised classification method m the field of machine learning. e-varieties (CV) and c-regression (CR) are linear clustering that can find linear structures of a dataset. CV and CR are clustering algorithms that perform principal component analysis and regression analysis at the same time, respectively. By the way, when clustering is used in the actual society, there are situations when_ the number of objects in each cluster is restricted. In this paper, we propose new linear clustering algorithms with constraints on cluster size.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [41] A Hybrid of Multiple Linear Regression Clustering Model with Support Vector Machine for Colorectal Cancer Tumor Size Prediction
    Shafi, Muhammad Ammar
    Rusiman, Mohd Saifullah
    Ismail, Shuhaida
    Kamardan, Muhamad Ghazali
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 323 - 328
  • [42] A hybrid of Multiple Linear Regression Clustering model with support vector machine for colorectal cancer tumor size prediction
    Shafi M.A.
    Rusiman M.S.
    Ismail S.
    Kamardan M.G.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (04): : 323 - 328
  • [43] Clustering Heterogeneous Web Data Using Clustering by Compression. Cluster Validity
    Cernian, Alexandra
    Carstoiu, Dorin
    Olteanu, Adriana
    PROCEEDINGS OF THE 10TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, 2009, : 123 - 126
  • [44] Clustering Categorical Data:A Cluster Ensemble Approach
    何增友
    High Technology Letters, 2003, (04) : 8 - 12
  • [45] Improving the quality of Clustering using Cluster Ensembles
    Nisha, M. N.
    Mohanavalli, S.
    Swathika, R.
    2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT 2013), 2013, : 88 - 92
  • [46] Energy Efficient Clustering in Wireless Sensor Network using Cluster of Cluster Heads
    Deshpande, Vaibhav V.
    Patil, Arvind R. Bhagat
    2013 TENTH INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS NETWORKS (WOCN), 2013,
  • [47] Size Constrained Clustering With MILP Formulation
    Tang, Wei
    Yang, Yang
    Zeng, Lanling
    Zhan, Yongzhao
    IEEE ACCESS, 2020, 8 : 1587 - 1599
  • [48] Consequences of ignoring clustering in linear regression
    Georgia Ntani
    Hazel Inskip
    Clive Osmond
    David Coggon
    BMC Medical Research Methodology, 21
  • [49] Consequences of ignoring clustering in linear regression
    Ntani, Georgia
    Inskip, Hazel
    Osmond, Clive
    Coggon, David
    BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [50] Linear Time Maximum Margin Clustering
    Wang, Fei
    Zhao, Bin
    Zhang, Changshui
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (02): : 319 - 332