On Linear Clustering with Constraints on Cluster Size

被引:0
作者
Kimoto, Naoya [1 ]
Endo, Yasunori [2 ]
机构
[1] Univ Tsukuba, Masters Program Risk Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
来源
2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS) | 2018年
关键词
clustering; linear structure; constraints on cluster size;
D O I
10.1109/SCIS-ISIS.2018.00137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is unsupervised classification method m the field of machine learning. e-varieties (CV) and c-regression (CR) are linear clustering that can find linear structures of a dataset. CV and CR are clustering algorithms that perform principal component analysis and regression analysis at the same time, respectively. By the way, when clustering is used in the actual society, there are situations when_ the number of objects in each cluster is restricted. In this paper, we propose new linear clustering algorithms with constraints on cluster size.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [31] Clustering and Constraints for Real-time Multicast
    Cheng, Wei
    Cheng, Shi
    Wu, Chanle
    Yue, Jun
    Ye, Gang
    He, Lian
    NAS: 2009 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, ARCHITECTURE, AND STORAGE, 2009, : 184 - 187
  • [32] Clustering in WSN with Latency and Energy Consumption Constraints
    Bassam Aoun
    Raouf Boutaba
    Journal of Network and Systems Management, 2006, 14 : 415 - 439
  • [33] Enhanced Dominant Sets Clustering by Cluster Expansion
    Hou, Jian
    Zhang, Aihua
    IEEE ACCESS, 2018, 6 : 8916 - 8924
  • [34] A Grid Clustering Algorithm Using Cluster Boundaries
    Edla, Damodar Reddy
    Jana, Prasanta K.
    PROCEEDINGS OF THE 2012 WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES, 2012, : 254 - 259
  • [35] Determination of cluster number in clustering microarray data
    Shen, JD
    Chang, SI
    Lee, ES
    Deng, YP
    Brown, SJ
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) : 1172 - 1185
  • [36] Weighting cluster ensembles in evidence accumulation clustering
    Duarte, F. Jorge
    Fred, Ana L. N.
    Lourenco, Andre
    Rodrigues, M. Fatima
    2005 PORTUGUESE CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 159 - 167
  • [37] PARCLE: A parallel clustering algorithm for Cluster System
    Zhou, B
    Shen, JY
    Peng, QK
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 4 - 8
  • [38] Fuzzy Clustering for Optimally Weighted Cluster Kriging
    van Stein, Bas
    Wang, Hao
    Kowalczyk, Wojtek
    Emmerich, Michael
    Back, Thomas
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 939 - 945
  • [39] Interpreting clustering results through cluster labeling
    Maqbool, O
    Babri, HA
    IEEE: 2005 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2005, : 429 - 434
  • [40] Efficient Cluster Labeling for Support Vector Clustering
    D'Orangeville, V.
    Mayers, M. Andre
    Monga, M. Ernest
    Wang, M. Shengrui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (11) : 2494 - 2506