Charpy impact energy data: a Markov chain Monte Carlo analysis

被引:6
|
作者
Stephens, DA
Smith, AFM
Moskovic, R
机构
[1] Imp. Coll. Sci., Technol. and Med., London
[2] Magnox Electric, Berkeley
[3] Department of Mathematics, Huxley Building, Imp. Coll. Sci., Technol. and Med., London, SW7 2BZ
关键词
Bayesian inference; Charpy impact energy; dose-damage relationship; Markov chain Monte Carlo method; neutron irradiation; BAYESIAN COMPUTATION;
D O I
10.1111/1467-9876.00085
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To assess radiation damage in steel for reactor pressure vessels in the nuclear industry, specimens are subjected to the Charpy test, which measures how much energy a specimen can absorb at a given test temperature before cracking. The resulting Charpy impact energy data are well represented by a three-parameter Burr curve as a function of test temperature, in which the parameters of the Burr curve are themselves dependent on irradiation dose. The resulting non-linear model function, combined with heteroscedastic random errors, gives rise to complicated likelihood surfaces that make conventional statistical techniques difficult to implement. To compute estimates of parameters of practical interest, Markov chain Monte Carlo sampling-based techniques are implemented. The approach is applied to 40 data sets from specimens subjected to no irradiation or one or two doses of irradiation. The influence of irradiation dose on the amount of energy absorbed is investigated.
引用
收藏
页码:477 / 492
页数:16
相关论文
共 50 条
  • [11] Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis
    Christensen, N
    Meyer, R
    PHYSICAL REVIEW D, 1998, 58 (08)
  • [12] Markov chain Monte Carlo in the analysis of single-molecule experimental data
    Kou, SC
    Xie, XS
    Liu, JS
    MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 123 - 133
  • [13] Improving Markov Chain Monte Carlo algorithms in LISA Pathfinder Data Analysis
    Karnesis, N.
    Nofrarias, M.
    Sopuerta, C. F.
    Lobo, A.
    9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363
  • [14] Multivariate output analysis for Markov chain Monte Carlo
    Vats, Dootika
    Flegal, James M.
    Jones, Galin L.
    BIOMETRIKA, 2019, 106 (02) : 321 - 337
  • [15] Phase Unwrapping by Markov Chain Monte Carlo Energy Minimization
    Adi, Kusworo
    Suksmono, Andriyan Bayu
    Mengko, Tati Latifah Rajab
    Gunawan, Hendra
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) : 704 - 707
  • [16] Efficient Markov chain Monte Carlo with incomplete multinomial data
    Ahn, Kwang Woo
    Chan, Kung-Sik
    STATISTICS AND COMPUTING, 2010, 20 (04) : 447 - 456
  • [17] Hierarchical models, data augmentation, and Markov chain Monte Carlo
    van Dyk, DA
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 41 - 56
  • [18] Image segmentation by Data Driven Markov Chain Monte Carlo
    Tu, ZW
    Zhu, SC
    Shum, HY
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, : 131 - 138
  • [19] Efficient Markov chain Monte Carlo with incomplete multinomial data
    Kwang Woo Ahn
    Kung-Sik Chan
    Statistics and Computing, 2010, 20 : 447 - 456
  • [20] Markov Chain Monte Carlo for generating ranked textual data
    Cerqueti, Roy
    Ficcadenti, Valerio
    Dhesi, Gurjeet
    Ausloos, Marcel
    INFORMATION SCIENCES, 2022, 610 : 425 - 439