Non-Abelian U-duality for membranes

被引:15
作者
Sakatani, Yuho [1 ]
Uehara, Shozo [1 ]
机构
[1] Kyoto Prefectural Univ Med, Dept Phys, Kyoto 6060823, Japan
来源
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS | 2020年 / 2020卷 / 07期
基金
日本学术振兴会;
关键词
LIE T-DUALITY; SIGMA-MODELS; INVARIANCE; ROTATIONS; ETA;
D O I
10.1093/ptep/ptaa063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The T-duality of string theory can be extended to the Poisson-Lie T-duality when the target space has a generalized isometry group given by a Drinfel'd double. In M-theory, T-duality is understood as a subgroup of U-duality, but the non-Abelian extension of U-duality is still a mystery. In this paper we study membrane theory on a curved background with a generalized isometry group given by the epsilon(n) algebra. This provides a natural setup to study non-Abelian U-duality because the epsilon(n) algebra has been proposed as a U-duality extension of the Drinfel'd double. We show that the standard treatment of Abelian U-duality can be extended to the non-Abelian setup. However, a famous issue in Abelian U-duality still exists in the non-Abelian extension.
引用
收藏
页数:27
相关论文
共 59 条
  • [21] Poisson-Lie identities and dualities of Bianchi cosmologies
    Hlavaty, Ladislav
    Petr, Ivo
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (10):
  • [22] NEW SOLVABLE SIGMA MODELS IN PLANE-PARALLEL WAVE BACKGROUND
    Hlavaty, Ladislav
    Petr, Ivo
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (02):
  • [23] Exceptional field theory. III. E8(8)
    Hohm, Olaf
    Samtleben, Henning
    [J]. PHYSICAL REVIEW D, 2014, 90 (06):
  • [24] Exceptional field theory. I. E6(6)-covariant form of M-theory and type IIB
    Hohm, Olaf
    Samtleben, Henning
    [J]. PHYSICAL REVIEW D, 2014, 89 (06):
  • [25] Exceptional field theory. II. E7(7)
    Hohm, Olaf
    Samtleben, Henning
    [J]. PHYSICAL REVIEW D, 2014, 89 (06):
  • [26] Exceptional Form of D=11 Supergravity
    Hohm, Olaf
    Samtleben, Henning
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (23)
  • [27] Generalized metric formulation of double field theory
    Hohm, Olaf
    Hull, Chris
    Zwiebach, Barton
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (08):
  • [28] Hull C, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/09/099
  • [29] FINITENESS AND CONFORMAL-INVARIANCE IN NONLINEAR SIGMA-MODELS
    HULL, CM
    TOWNSEND, PK
    [J]. NUCLEAR PHYSICS B, 1986, 274 (02) : 349 - 362
  • [30] Poisson-Lie T-duality and Bianchi type algebras
    Jafarizadeh, MA
    Rezaei-Aghdam, A
    [J]. PHYSICS LETTERS B, 1999, 458 (04) : 477 - 490