Scintillation index measurement using time-correlated single-photon counting laser radar

被引:11
|
作者
Henriksson, Markus [1 ]
Sjoqvist, Lars [1 ]
机构
[1] FOI Swedish Def Res Agcy, Laser Syst Grp, Div Sensor & EW Syst, S-58111 Linkoping, Sweden
关键词
atmospheric turbulence; scintillation index; covariance; time-correlated single-photon counting; laser radar;
D O I
10.1117/1.OE.53.8.081902
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The scintillation index is a common measure of the effects of atmospheric turbulence. Using a photon-counting sensor, the integration time for each sample needs to be short enough to ensure that the intensity is constant during this time. Simultaneously, hardware limitations, including detector dead-time, restrict the count rate so that the number of counts in a single time segment is extremely low. The dead-time also introduces nonlinear effects. The variance calculation in the scintillation index formula is then dominated by quantization error, and the scintillation index is severely overestimated. We investigate two methods of correcting the scintillation index based on data from a time-correlated single-photon counting laser radar system. The first approach is based on the covariance calculation of the data and can be used for very low count rates and high temporal resolution. This method may also be useful in other cases where the variance of noisy, time-resolved data needs to be calculated. The second method is based on fitting the theoretical probability density function for the intensity fluctuation caused by propagation through turbulence to the experimental data. This method can take dead-time effects into account and be used for higher count rates. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Time-correlated single-photon counting laser radar in turbulence
    Henriksson, Markus
    Sjoqvist, Lars
    TECHNOLOGIES FOR OPTICAL COUNTERMEASURES VIII, 2011, 8187
  • [2] Laser depth measurement based on time-correlated single-photon counting
    Massa, JS
    Wallace, AM
    Buller, GS
    Fancey, SJ
    Walker, AC
    OPTICS LETTERS, 1997, 22 (08) : 543 - 545
  • [3] Laser depth measurement based on time-correlated single-photon counting
    Department of Physics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
    不详
    Opt. Lett., 8 (543-545):
  • [4] Dynamic time-correlated single-photon counting laser ranging
    Peng H.
    Wang Y.-R.
    Meng W.-D.
    Yan P.-Q.
    Li Z.-H.
    Li C.
    Pan H.-F.
    Wu G.
    Wang, Yu-rong (yrwang152@163.com), 2018, Springer Verlag (14): : 129 - 132
  • [5] Dynamic time-correlated single-photon counting laser ranging
    彭欢
    王煜蓉
    孟文东
    颜佩琴
    李召辉
    李辰
    潘海峰
    吴光
    OptoelectronicsLetters, 2018, 14 (02) : 129 - 132
  • [6] Time-correlated single-photon counting on a chip
    Boas, Gary
    Biophotonics International, 2007, 14 (11): : 15 - 16
  • [7] Time-correlated single-photon counting with superconducting single-photon detectors
    Stevens, Martin J.
    Hadfield, Robert H.
    Schwall, Robert E.
    Nam, Sae Woo
    Mirin, Richard P.
    ADVANCED PHOTON COUNTING TECHNIQUES, 2006, 6372
  • [8] Laser-based distance measurement using picosecond resolution time-correlated single-photon counting
    Pellegrini, S
    Buller, GS
    Smith, JM
    Wallace, AM
    Cova, S
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2000, 11 (06) : 712 - 716
  • [9] FLEXIBLE INSTRUMENT FOR TIME-CORRELATED SINGLE-PHOTON COUNTING
    BECKER, W
    STIEL, H
    KLOSE, E
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1991, 62 (12): : 2991 - 2996
  • [10] Recent advances in time-correlated single-photon counting
    Koberling, Felix
    Kraemer, Benedikt
    Tannert, Sebastian
    Ruettinger, Steffen
    Ortmann, Uwe
    Patting, Matthias
    Wahl, Michael
    Ewers, Benjamin
    Kapusta, Peter
    Erdmann, Rainer
    SINGLE MOLECULE SPECTROSCOPY AND IMAGING, 2008, 6862