Interplay between Rashba interaction and electromagnetic field in the edge states of a two-dimensional topological insulator

被引:12
作者
Dolcini, Fabrizio [1 ,2 ]
机构
[1] Politecn Torino, Dipartimento Sci Applicata & Tecnol, I-10129 Turin, Italy
[2] CNR SPIN, Monte S Angelo Via Cinthia, I-80126 Naples, Italy
关键词
FRACTIONAL CHARGE; QUANTUM; CONDUCTANCE; TRANSPORT;
D O I
10.1103/PhysRevB.95.085434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of Rashba interaction and electromagnetic field on the edge states of a two-dimensional topological insulator are investigated in a nonperturbative way. We show that the electron dynamics is equivalent to a problem of massless Dirac fermions propagating with an inhomogeneous velocity, enhanced by the Rashba profile with respect to the bare Fermi value v(F). Despite the inelastic and time-reversal breaking processes induced by the electromagnetic field, no backscattering occurs without interaction. The photoexcited electron densities are explicitly obtained in terms of the electric field and the Rashba interaction, and are shown to fulfill generalized chiral anomaly equations. The case of a Gaussian electromagnetic pulse is analyzed in detail. When the photoexcitation occurs far from the Rashba region, the latter effectively acts as a "superluminal gate" boosting the photoexcited wave packet outside the light-cone determined by vF. In contrast, for an electric pulse overlapping the Rashba region, the emerging wave packets are squeezed in a manner that depends on the overlap area. The electron-electron interaction effects are also discussed, for both intraspin and interspin density-density coupling. The results suggest that Rashba interaction, often considered as an unwanted disorder effect, may be exploited to tailor the shape and the propagation time of photoexcited spin-polarized wave packets.
引用
收藏
页数:14
相关论文
共 96 条
[1]   AXIAL-VECTOR VERTEX IN SPINOR ELECTRODYNAMICS [J].
ADLER, SL .
PHYSICAL REVIEW, 1969, 177 (5P2) :2426-&
[2]   Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime [J].
Altimiras, C. ;
le Sueur, H. ;
Gennser, U. ;
Cavanna, A. ;
Mailly, D. ;
Pierre, F. .
NATURE PHYSICS, 2010, 6 (01) :34-39
[3]   Topological Insulator Materials [J].
Ando, Yoichi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (10)
[4]   Photogalvanic effects in topological insulators [J].
Artemenko, S. N. ;
Kaladzhyan, V. O. .
JETP LETTERS, 2013, 97 (02) :82-86
[5]   A PCAC PUZZLE - PI0-)GAMMAGAMMA IN SIGMA-MODEL [J].
BELL, JS ;
JACKIW, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 60 (01) :47-+
[6]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[7]  
Bertlmann RA., 1996, International Series of Monographs on Physics
[8]   Gigahertz quantized charge pumping [J].
Blumenthal, M. D. ;
Kaestner, B. ;
Li, L. ;
Giblin, S. ;
Janssen, T. J. B. M. ;
Pepper, M. ;
Anderson, D. ;
Jones, G. ;
Ritchie, D. A. .
NATURE PHYSICS, 2007, 3 (05) :343-347
[9]   Electron quantum optics in ballistic chiral conductors [J].
Bocquillon, Erwann ;
Freulon, Vincent ;
Parmentier, Francois D. ;
Berroir, Jean-Marc ;
Placais, Bernard ;
Wahl, Claire ;
Rech, Jerome ;
Jonckheere, Thibaut ;
Martin, Thierry ;
Grenier, Charles ;
Ferraro, Dario ;
Degiovanni, Pascal ;
Feve, Gwendal .
ANNALEN DER PHYSIK, 2014, 526 (1-2) :1-30
[10]  
Brenneis A, 2015, NAT NANOTECHNOL, V10, P135, DOI [10.1038/NNANO.2014.276, 10.1038/nnano.2014.276]