Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon

被引:67
作者
Lu, Yen-Tien [1 ]
Barron, Andrew R. [2 ,3 ,4 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
[3] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[4] Swansea Univ, Coll Engn, Energy Safety Res Inst, Swansea SA2 8PP, W Glam, Wales
关键词
SOLAR-CELL APPLICATIONS; SURFACE; NANOWIRES; ARRAYS;
D O I
10.1039/c4ta02006e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new one-step copper-assisted chemical etching technique is reported to more economically prepare nanopore-type anti-reflective layers, which can effectively suppress reflection of Si wafer surfaces for solar cell applications. In contrast to the Au and Ag processes, phosphorous acid (rather than hydrogen peroxide) is utilized as a reducing agent to reduce Cu2+ to Cu-0 nanoparticles. The Cu nanoparticles catalyse the oxidization of Si in the vicinity of the nanoparticles to SiO2, which is then etched by HF to form nanopores. The effects of the HF and H3PO3 concentrations, the HF : H2O volume ratio, and the etching time on the black silicon morphology with the corresponding Si surface reflectivity have been systematically investigated. The size and shape of the pores are controlled by [Cu2+] and the subsequent size of the NPs as controlled by [H3PO3], while the depth of the pores are limited by [HF] and the etch time. With [Cu2+] = 500 mu M and [H3PO3] = 10 mM, the fabricated black silicon possesses the lowest relative effective reflectivity, 0.96%, and the shortest nanopore length (590 nm).
引用
收藏
页码:12043 / 12052
页数:10
相关论文
共 25 条
[1]   Nanostructured black silicon and the optical reflectance of graded-density surfaces [J].
Branz, Howard M. ;
Yost, Vernon E. ;
Ward, Scott ;
Jones, Kim M. ;
To, Bobby ;
Stradins, Paul .
APPLIED PHYSICS LETTERS, 2009, 94 (23)
[2]   LIGHT TRAPPING PROPERTIES OF PYRAMIDALLY TEXTURED SURFACES [J].
CAMPBELL, P ;
GREEN, MA .
JOURNAL OF APPLIED PHYSICS, 1987, 62 (01) :243-249
[3]   Anti-reflecting and photonic nanostructures [J].
Chattopadhyay, S. ;
Huang, Y. F. ;
Jen, Y. J. ;
Ganguly, A. ;
Chen, K. H. ;
Chen, L. C. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2010, 69 (1-3) :1-35
[4]   Fabrication and characteristics of black silicon for solar cell applications: An overview [J].
Hsu, Chih-Hung ;
Wu, Jia-Ren ;
Lu, Yen-Tien ;
Flood, Dennis J. ;
Barron, Andrew R. ;
Chen, Lung-Chien .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 25 :2-17
[5]   Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred Etching Directions [J].
Huang, Zhipeng ;
Shimizu, Tomohiro ;
Senz, Stephan ;
Zhang, Zhang ;
Zhang, Xuanxiong ;
Lee, Woo ;
Geyer, Nadine ;
Goesele, Ulrich .
NANO LETTERS, 2009, 9 (07) :2519-2525
[6]   Black nonreflecting silicon surfaces for solar cells [J].
Koynov, S ;
Brandt, MS ;
Stutzmann, M .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[7]   Realization of a near-perfect antireflection coating for silicon solar energy utilization [J].
Kuo, Mei-Ling ;
Poxson, David J. ;
Kim, Yong Sung ;
Mont, Frank W. ;
Kim, Long Kyu ;
Schuhert, E. Fred ;
Lin, Shawn-Yu .
OPTICS LETTERS, 2008, 33 (21) :2527-2529
[8]   Extremely Superhydrophobic Surfaces with Micro- and Nanostructures Fabricated by Copper Catalytic Etching [J].
Lee, Jung-Pil ;
Choi, Sinho ;
Park, Soojin .
LANGMUIR, 2011, 27 (02) :809-814
[9]   Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications [J].
Liu, Yaoping ;
Lai, Tao ;
Li, Hailing ;
Wang, Yan ;
Mei, Zengxia ;
Liang, Huili ;
Li, Zhilei ;
Zhang, Fengming ;
Wang, Wenjing ;
Kuznetsov, Andrej Yu ;
Du, Xiaolong .
SMALL, 2012, 8 (09) :1392-1397
[10]   Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching [J].
Lu, Yen-Tien ;
Barron, Andrew R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (24) :9862-9870