A Note on the Existence of Fractional f-factors in Random Graphs

被引:9
作者
Cai, Jian-sheng [1 ]
Wang, Xiao-yang [2 ]
Yan, Gui-ying [3 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Peoples R China
[2] Capital Med Univ, Beijing Anzhen Hosp, Beijing 100029, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
random graph; probabilistic method; f-factor; fractional f-factor;
D O I
10.1007/s10255-014-0411-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = G(n,p) be a binomial random graph with n vertices and edge probability p = p(n), and f be a nonnegative integer-valued function defined on V(G) such that 0 < a <= f(x) <= b < np - 2 root nplogn for every x epsilon V(G). An fractional f-indicator function is an function h that assigns to each edge of a graph G a number h(e) in [0,1] so that for each vertex x, we have d(G)(h)(x) = f(x), where d(G)(h)(x) = Sigma(x epsilon e)h(e) is the fractional degree of x in G. Set E-h = {e : e epsilon E(G) and h(e) not equal 0}. If G(h) is a spanning subgraph of G such that E(G(h)) = E-h, then G(h) is called an fractional f-factor of G. In this paper, we prove that for any binomial random graph G(n,p) with p >= n(-2/3), almost surely G(n,p) contains an fractional f-factor.
引用
收藏
页码:677 / 680
页数:4
相关论文
共 6 条
[1]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[2]  
Cai JS, 2008, ARS COMBINATORIA, V89, P235
[3]   Connected factors in graphs - a survey [J].
Kouider, M ;
Vestergaard, PD .
GRAPHS AND COMBINATORICS, 2005, 21 (01) :1-26
[4]   Fractional (g, f)-factors of graphs [J].
Liu, GZ ;
Zhang, LJ .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (04) :541-545
[5]  
Plummer M., 2003, Handbook of Graph Theory, P403
[6]  
[No title captured]