Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors

被引:268
作者
Liu, Yuanda [1 ,2 ]
Wang, Fengqiu [1 ,2 ]
Wang, Xiaomu [3 ]
Wang, Xizhang [4 ]
Flahaut, Emmanuel [5 ,6 ]
Liu, Xiaolong [1 ,2 ]
Li, Yao [1 ,2 ]
Wang, Xinran [1 ,2 ]
Xu, Yongbing [1 ,2 ]
Shi, Yi [1 ,2 ]
Zhang, Rong [1 ,2 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[4] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210093, Jiangsu, Peoples R China
[5] CNRS, Inst Carnot Cirimat, F-31062 Toulouse, France
[6] Univ Toulouse, UPS, INP, Inst Carnot Cirimat, F-31062 Toulouse 9, France
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ELECTRONIC-STRUCTURE; PILLARED GRAPHENE; THIN-FILM; NANOSTRUCTURE; LAYER;
D O I
10.1038/ncomms9589
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene has emerged as a promising material for photonic applications fuelled by its superior electronic and optical properties. However, the photoresponsivity is limited by the low absorption cross-section and ultrafast recombination rates of photoexcited carriers. Here we demonstrate a photoconductive gain of similar to 10(5) electrons per photon in a carbon nanotube-graphene hybrid due to efficient photocarriers generation and transport within the nanostructure. A broadband photodetector (covering 400-1,550 nm) based on such hybrid films is fabricated with a high photoresponsivity of >100 AW(-1) and a fast response time of similar to 100 mu s. The combination of ultra-broad bandwidth, high responsivities and fast operating speeds affords new opportunities for facile and scalable fabrication of all-carbon optoelectronic devices.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[2]   Multiprobe transport experiments on individual single-wall carbon nanotubes [J].
Bezryadin, A ;
Verschueren, ARM ;
Tans, SJ ;
Dekker, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4036-4039
[3]   Contact resistance between carbon nanotubes [J].
Buldum, A ;
Lu, JP .
PHYSICAL REVIEW B, 2001, 63 (16)
[4]   Ultra-Broadband Photodetector for the Visible to Terahertz Range by Self-Assembling Reduced Graphene Oxide-Silicon Nanowire Array Heterojunctions [J].
Cao, Yang ;
Zhu, Jiayi ;
Xu, Jia ;
He, Junhui ;
Sun, Jia-Lin ;
Wang, Yingxin ;
Zhao, Ziran .
SMALL, 2014, 10 (12) :2345-2351
[5]   Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage [J].
Dimitrakakis, Georgios K. ;
Tylianakis, Emmanuel ;
Froudakis, George E. .
NANO LETTERS, 2008, 8 (10) :3166-3170
[6]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39
[7]   Photothermoelectric and Photoelectric Contributions to Light Detection in Metal-Graphene-Metal Photodetectors [J].
Echtermeyer, T. J. ;
Nene, P. S. ;
Trushin, M. ;
Gorbachev, R. V. ;
Eiden, A. L. ;
Milana, S. ;
Sun, Z. ;
Schliemann, J. ;
Lidorikis, E. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2014, 14 (07) :3733-3742
[8]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2
[9]   Light-matter interaction in a microcavity-controlled graphene transistor [J].
Engel, Michael ;
Steiner, Mathias ;
Lombardo, Antonio ;
Ferrari, Andrea C. ;
Loehneysen, Hilbert V. ;
Avouris, Phaedon ;
Krupke, Ralph .
NATURE COMMUNICATIONS, 2012, 3
[10]   Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes [J].
Gabor, Nathaniel M. ;
Zhong, Zhaohui ;
Bosnick, Ken ;
Park, Jiwoong ;
McEuen, Paul L. .
SCIENCE, 2009, 325 (5946) :1367-1371