Cohomologically rigid solvable Lie algebras with a nilradical of arbitrary characteristic sequence

被引:12
作者
Ancochea Bermudez, J. M.
Campoamor-Stursberg, R. [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Matemat, Inst Matemat Interdisciplinar, E-28040 Madrid, Spain
关键词
Lie algebra; Solvable; Rigidity; Rank; Cohomology; Characteristic sequence; DEFORMATIONS; CONTRACTIONS;
D O I
10.1016/j.laa.2015.09.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that for a finite-dimensional solvable rigid Lie algebra r, its rank is upper bounded by the length of the characteristic sequence c(n) of its nilradical n. For any characteristic sequence c = (n(1),..., n(k,) 1), it is proved that there exists at least a solvable Lie algebra re the nilradical of which has this characteristic sequence and that satisfies the conditions H-p (r(c), r(c)) = 0 for p <= 3. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 147
页数:13
相关论文
共 20 条
[1]  
Ancochea J.M., 1992, COMMUN ALGEBRA, V20, P875, DOI DOI 10.1080/00927879208824380
[2]  
Ancochea J.M., 2002, TRANF GROUPS, V7, P307
[3]  
[Anonymous], 2007, MONATSH MATH
[4]   ON CERTAIN CLASSES OF RIGID LIE-ALGEBRAS [J].
CARLES, R .
MATHEMATISCHE ANNALEN, 1985, 272 (04) :477-488
[5]   THE STRUCTURE OF RIGID LIE-ALGEBRAS [J].
CARLES, R .
ANNALES DE L INSTITUT FOURIER, 1984, 34 (03) :65-82
[6]  
Dixmier J., 1955, Acta Sci. Math. (Szeged), V16, P246
[7]   SYSTEM OF WEIGHTS ON NILPOTENT LIE-ALGEBRA [J].
FAVRE, G .
MANUSCRIPTA MATHEMATICA, 1973, 9 (01) :53-90
[8]   Global geometric deformations of current algebras as Krichever-Novikov type algebras [J].
Fialowski, A ;
Schlichenmaier, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (03) :579-612
[9]  
FIALOWSKI A, 1990, COMMUN ALGEBRA, V18, P4121
[10]   Deformations and contractions of algebraic structures [J].
Fialowski, Alice .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 286 (01) :240-252