In vitro simulated digestion and fecal fermentation of polysaccharides from loquat leaves: Dynamic changes in physicochemical properties and impacts on human gut microbiota

被引:103
|
作者
Wu, Ding-Tao [1 ]
Fu, Yuan [1 ,2 ]
Guo, Huan [1 ,2 ]
Yuan, Qin [1 ]
Nie, Xi-Rui [1 ]
Wang, Sheng-Peng [3 ]
Gan, Ren-You [2 ]
机构
[1] Sichuan Agr Univ, Coll Food Sci, Inst Food Proc & Safety, Yaan 625014, Peoples R China
[2] Chinese Acad Agr Sci, Inst Urban Agr, Chengdu 610213, Peoples R China
[3] Univ Macau, Inst Chinese Med Sci, State Key Lab Qual Res Chinese Med, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Loquat polysaccharides; in vitro digestion; Fecal fermentation; Structural characteristic; Gut microbiota; HUMAN INTESTINAL MICROBIOTA; ANTIOXIDANT ACTIVITY;
D O I
10.1016/j.ijbiomac.2020.11.130
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this study was to well understand the dynamic changes of physicochemical properties of polysaccharides from loquat leaves (LLP) during in vitro simulated saliva-gastrointestinal digestion and fecal fermentation and its related impacts on human gut microbiota. Results showed that the contents of reducing sugar of LLP slightly increased during the gastrointestinal digestion, and its molecular weight also slightly decreased, suggesting that LLP could be slightly degraded under the gastrointestinal digestion conditions. Moreover, during the fecal fermentation, the molecular weight of the indigestible LLP (LLP-I) significantly decreased, and the molar ratio of constituent monosaccharides of LLP-I, such as glucuronic acid, galacturonic acid, galactose, and arabinose, significantly changed, indicating that LLP-I could be degraded and consumed by human gut microbiota. Indeed, some beneficial bacteria such as Megasphaera, Megamonas, Bifidobacterium, Phascolarctobacterium, and Desulfovibrio significantly increased, suggesting that LLP-I could change the composition and abundance of gut microbiota. LLP-I could also promote the production of health-promoting short chain fatty acids. Results from this study are benefical to well understand the in vitro digestion and fecal fermentation behaviors of LLP, and LLP can be developed as a potential prebiotic in the functional food industry. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:733 / 742
页数:10
相关论文
共 50 条
  • [1] In Vitro Digestion and Fecal Fermentation of Polysaccharides from Hawthorn and Its Impacts on Human Gut Microbiota
    Zhou, Kaixuan
    Zhou, Qian
    Han, Xue
    Gao, Zhe
    Peng, Ruyan
    Lin, Xuan
    Cheng, Xinlong
    Zhao, Wen
    PROCESSES, 2022, 10 (10)
  • [2] Effects of in vitro simulated digestion and fecal fermentation of polysaccharides from straw mushroom (Volvariella volvacea) on its physicochemical properties and human gut microbiota
    Hu, Wei
    Di, Qing
    Liang, Tao
    Zhou, Na
    Chen, Hongxia
    Zeng, Zhihong
    Luo, Yang
    Shaker, Majid
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 239
  • [3] Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera
    Wang, Yidan
    Chen, Guijie
    Peng, Yujia
    Rui, Ying
    Zeng, Xiaoxiong
    Ye, Hong
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2019, 100 (167-174) : 167 - 174
  • [4] Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota
    Wu, Ding-Tao
    Yuan, Qin
    Guo, Huan
    Fu, Yuan
    Li, Fen
    Wang, Sheng-Peng
    Gan, Ren-You
    FOOD RESEARCH INTERNATIONAL, 2021, 141
  • [5] In vivo absorption, in vitro simulated digestion, and fecal fermentation properties of Imperata cylindrica polysaccharides and their effects on gut microbiota
    Yu, Wenchen
    Wang, Junwen
    Xiong, Yi
    Liu, Jiaren
    Baranenko, Denis
    Zhang, Yingchun
    Lu, Weihong
    FOOD CHEMISTRY, 2024, 461
  • [6] In Vitro Digestion and Fermentation by Human Fecal Microbiota of Polysaccharides from Flaxseed
    Zhou, Xin
    Zhang, Zhao
    Huang, Fenghong
    Yang, Chen
    Huang, Qingde
    MOLECULES, 2020, 25 (19):
  • [7] Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from Helicteres angustifolia L
    Chen, Ligen
    Liu, Junwei
    Ge, Xiaodong
    Xu, Wei
    Chen, Yun
    Li, Fengwei
    Cheng, Delin
    Shao, Rong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 141 : 1065 - 1071
  • [8] In vivo absorption, in vitro simulated digestion and fecal fermentation properties of polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and their effects on human gut microbiota
    Gao, Kui-Xu
    Peng, Xi
    Wang, Jing-Ya
    Wang, Yao
    Pei, Ke
    Meng, Xiang-Long
    Zhang, Shuo-Sheng
    Hu, Mei-Bian
    Liu, Yu-Jie
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 266
  • [9] In Vitro Digestion and Fecal Fermentation of Peach Gum Polysaccharides with Different Molecular Weights and Their Impacts on Gut Microbiota
    Wei, Chaoyang
    Yao, Li
    Zhang, Lin
    Zhang, Yu
    Luo, Qian
    Qiu, Shuyi
    Zeng, Xiangyong
    Chen, Shiguo
    Ye, Xingqian
    FOODS, 2022, 11 (24)
  • [10] In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose
    Guo, Dongdong
    Lei, Jiayu
    He, Chang
    Peng, Zhijie
    Liu, Rongzhu
    Pan, Xu
    Meng, Junlong
    Feng, Cuiping
    Xu, Lijing
    Cheng, Yanfen
    Chang, Mingchang
    Geng, Xueran
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 208 : 343 - 355